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This paper introduces an approach for extracting and visualizing geo-social 
semantics of user mentions on Twitter. The approach consists of three steps. First,  
data filtering and processing is performed to construct a directed area-to-area 
mention network in which tweets are aggregated into flow bins between 
geographic areas. Second, using flow bins as documents, a probabilistic topic 
model is employed to detect a collection of topics, and classify each area-to-area 
flow into a mixture of topics with differing probabilities. Third, for each topic, a 
modularity graph of mentions is obtained and visualized using a flow map and a 
topic cloud to infer semantics from the set of frequently co-occurring words for 
each topic. To demonstrate, a dataset of 19 million geo-tagged mentions during 
the primary elections (Feb-Jun, 2016) in the U.S. were analyzed. The results 
highlight changing patterns of symmetry, distance and clustering of flows by the 
topic of content.  

1   Introduction 

Previous studies have utilized user generated textual content such as geo-tagged tweets 
and messages exchanged in location-based social networks (LBSN) to study the effect 
of geographic proximity on social interactions [1-3]; the influence of information 
diffusion and social networks on real-world geographic events, such as demonstrations, 
protests, and group activities [4]; and the structural and geographic characteristics of 
the communication network [5-7]. Such studies use information flows to model social 
interactions, but often ignore the content of the information exchanged between the 
individuals of the network.  

A variety of computational and semantic analysis techniques have been developed 
to infer human behavior, ideological and attitudinal similarity between individuals [8], 
common topics and way of speaking [9], group identities [10], demographic and socio-
economic characteristics [11] from large volumes of user-generated textual data. Latent 
Dirichlet Allocation (LDA) [12, 13] has been successfully employed to detect 
geographic events, and recommend places and friends based on user location and 
similarity of shared content between users in LBSNs. Despite these efforts, there has 
been little work that focuses on understanding of geographic patterns of interpersonal 
communication and how the common topics of information vary based on the 
geographic distance and characteristics of locations [14].  



We introduce an approach for extracting and visualizing geo-social semantics from 
the big data of user mentions on Twitter. The approach consists of three steps. First, 
data filtering and processing is performed and a bi-directional area-to-area mention 
network is constructed. In an area-to-area mention network, the original locations of 
tweets are aggregated into a small set of areas (e.g., counties) and mentions are 
combined into flow bins between these geographical areas. Second, flow bins are used 
to train a probabilistic topic model which generates a collection of topics and classify 
each flow bin into a mixture of topics with differing probabilities. Third, for each topic, 
a modularity graph of mentions is obtained and visualized using a flow map and a topic 
cloud to infer semantics from the set of frequently co-occurring words for each topic.  

2 Data processing and filtering 

To demonstrate, geo-tagged tweets within the Contiguous U.S. during presidential 
primaries and caucuses between February 1, 2016 and June 14, 2016 were collected 
through Twitter’s streaming API. This specific time period was selected for the intent 
to capture election related conversations in addition to other themes from the Twitter 
corpora. The data consisted of 284,868,345 tweets, and 4,571,070 million distinct users. 
We removed tweets from non-personal accounts (e.g., weather, emergency, and job 
ads), and external sources such as pictures and check-ins (e.g., Instagram, Foursquare); 
users with more than 3000 followers; and users whose velocities (i.e., equals to the 
distance divided by time between two consecutive tweets) are above (1,000km/h) which 
would indicate spam users and bots. After the initial filtering, the number of tweets 
decreased to 75.0% (213,649,745) and the users to 88% (4,050,523).  

A Twitter user can reply or mention other users by including their @username in her 
tweet. When a user A (sender) mentions user B (recipient), the tweet include only the 
location of the sender. The location of the recipient in a mention can be derived only if 
the recipient has a geo-tagged tweet in the sample. Among the filtered tweets, 45% 
(95,855,784) include a user mention, and 65.0% (2,632,840) of the users mentioned 
another user in a tweet at least once. The recipient’s location was successfully extracted 
in 19.80% (19,046,949) of all mention tweets to form a network of geo-tagged user 
mentions. 

3 Topic Modeling 

LDA has been commonly used to identify topics from large collections of textual data. 
Given a collection of textual documents (e.g., books, articles, emails), LDA models a 
collection of k topics as a multinomial distribution over words within these documents.  
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The probability that word W came from topic Z, is calculated as the normalized product 
of the frequency of W in Z ሺ ௓ܹାఉ௪	ሻ and the number of other words in document D 
that already belong to Z ሺܦ௓ା	∝). β and βw are hyper-parameters that represent the 
chance that word W belongs to topic Z even if it is nowhere else associated with Z.  

Training a topic model with short documents (i.e., individual tweets) results in 
unstable classifications with increased uncertainty due to the severe data sparsity [15]. 
To alleviate the problem, previous work combined tweets into temporal [16], spatio-
temporal [17], and user bins [18]. In order to capture the semantics of interpersonal 
conversations between distinct pairs of geographic areas we combined tweets into 
county-to-county flow bins by assigning each user to a home county, and adding tweets 
into a flow bin based on the home counties of the users in the mentioned relationship. 
Each tweet exists in an origin-destination flow bin only once to avoid duplicate content 
when a tweet includes multiple mentions between the same county pair.  

The density of geo-tagged mentions by distance (Figure 1) support the findings of 
previous research that the probability of a user mention is high between users with 
closer geographic proximity [19]. 46% of the geo-tagged mentions had both the 
recipient and sender within the same county, 70% were within the same state, and only 
30% were between states. In contrast to the short-text problem, the documents in a topic 
model must be small enough that the proportions between topics could vary 
significantly between documents. Great variation in volume between flow bins within 
states and between states distort the results of LDA and undermine the topical 
heterogeneity of the model. Thus, we separated the flow bins into two groups: within 
state, and between state; and constructed a separate LDA model for each. In this paper, 
we report the results of our analysis on user mentions in which the recipient and sender 
are from different states, in order to capture the geographical variation of the topical 
content among long-distance interpersonal communication.  
 

 

Figure 1 Density of geo-tagged user mentions by distance (in km) 

In order to alleviate the bias from small bins, we further filtered out the flow bins 
that have less than 100 tweets and 10 users before training the topic model. While the 
number of flow bins (or county pairs) decreased from 350,295 to 49,436; the volume 
of mentions was reduced by only 13%.  

We used the Mallet toolkit [20] to implement the LDA model and trained a set of 
topic models with differing number of topics (20, 50, and 100), number of iterations 



(2000), and evaluated the topical overlap using cosine similarity. We selected 50 topics 
as it produced the less overlapping topics than 100, and more distinct topics than 20.  

5  Mapping Modularity Flows 

The topic model classifies each flow bin with a mixture of topics with differing 
probabilities. For example, a flow from county A to county B may be comprised of 
50% topic 5, 30% topic 2, 10% topic 32, and 10% in other topics. Among a set of fuzzy 
classification of flow bins, one may isolate each topic to create a separate graph and 
estimate the weight of a link by multiplying the probability of isolated topic by the 
volume of user mentions on that link.  

Although the number of mentions have been significantly reduced after excluding 
within-state mentions, county-to-county pairs still form a complex graph with a large 
number of links that requires further simplification. One can reduce the graph by graph 
partitioning and regionalization [21, 22] which combines unit areas into a smaller set 
of natural regions where there are more flows within regions than across regions. In 
order to ease the interpretation of our results, and reveal user mention patterns at the 
state level, we aggregate county pairs into state-to-state user mention flows for each 
topic and calculate a modularity measure to select the flows that are above expectation 
[22]. Expected number of mentions on a link is calculated as: 
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where FO is the number of mentions originated from state O, FD is the number of times 
that state D is mentioned, f (O,D) is the number of mentions from state O to state D, FS 
is the number of mentions between all states, and ෌ ௜ܨ

ଶ௡

௜ୀ଴
 is used to remove within-

state expectations. Finally, modularity of a link O-D for topic Z is calculated as: 
 

MODZ (O, D) = PZ (AM - EM) 
 
where PZ is the probability of topic Z, AM is actual number of mentions, and EM is 
expected number of mentions on the link O-D. 

Figure 2 illustrates modularity flows of two topic graphs: (a) NBA finals (b) 
democratic primaries. The mentions on NBA finals have symmetrical flows which 
suggest on-going conversations between pairs of states. A distinct asymmetrical flow 
is observed from Ohio to Florida, which suggests Cleveland fans mentioning Heat fans, 
but their tweets are not replied. On the other hand, the mentions on democratic 
primaries are dominated by asymmetrical flows of mentions. The three big states CA, 
NY and TX receive more mentions than expected. One distinct difference between the 
two topics is that mentions on democratic primaries reach out to longer distance states 
without reciprocating conversations, whereas NBA is being discussed between close 
by states with on-going conversations. 
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Figure 2. State-to-state modularity flows of user mentions for two distinct topics:  

(a) NBA Finals (Prob: 0.12) (b) primaries and caucuses (Prob: 0.15). The width and 
color value of each flow is proportional to its modularity value. Node size illustrates 
the total modularity; and blue circles depict negative net flow whereas red circles depict 
positive net flows. Word clouds illustrate the set of frequently co-occurring words for 
each topic where the size of each word is proportional to its probability of co-
occurrence or popularity within that topic.  

5   Conclusion and Future Work 

We introduced a novel approach for extracting and visualizing geo-social semantics 
from the bi-directional user mention network on Twitter. The results highlighted 
distinct geographic patterns of symmetry, distance and clustering for user mentions. A 
major limitation of this study is that the temporal variation in topics is ignored. Future 
work is needed to incorporate temporal flow binning, and train the topic model to 
extract temporally varying patterns of mention topics between origin-destination pairs.   
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