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Abstract Despite the controversies of privacy and ethics, spatially-embedded com-
munication data from widespread and emerging online social networks provide an
unprecedented opportunity to study human interactions at the global scale. Detect-
ing communities of individuals who live close by and have strong communication
among each other is critical for a variety of application areas such as managing
disaster response, controlling disease spread, and developing sustainable urban
spaces and infrastructure. The ease of long-distance travel and communication have
generated a highly complex network of human interactions, in which long-distance
and short-distance ties coexist in multiple scales. Also, there is a hierarchical spatial
organization in human interaction networks which reflect historic and socio-political
borders. Patterns of human connectivity cross these historic and socio-political
borders at multiple geographic scales. Therefore, a comprehensive understanding of
human interactions necessitates analysis methods to take into account the complex-
ity introduced by the multi-scale nature of human connectivity. This paper employs
a spatially-constrained hierarchical regionalization algorithm to reveal multi-scale
community structures in the interpersonal communication network on Twitter. The
interpersonal communication network was constructed using a year of reciprocal
and geo-located mention tweets in the U.S. between August 2015 and 2016. The
results strikingly showed nested borders of cohesive regions at multiple scales,
which are inherent to human communication patterns in the regional hierarchy of
the U.S. Unsurprisingly, people communicated with others that live nearby, and
multi-scale regions overlap with administrative boundaries of the states, cultural
and dialectal regions, and topographical features. Furthermore, visualization of
interregional communication patterns revealed a variety of spatial connectivity
patterns such as poly-centricity, hierarchies, and spanning trees. Discovery of
such patterns is essential for understanding of the complex social system that is
influenced by long-distance ties.
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1 Introduction

Despite the controversies of privacy and ethics, in recent years, publicly available
data from location-based social networks (LBSN) such as Twitter, Foursquare,
Gowalla, and BrightKite have made it possible, for the first time in human history,
to examine human interactions at the global scale. One can infer human interactions
through various forms of geo-tagged communication data such as text, photo, video,
and check-in locations provided by online platforms. Understanding of human
communication and social ties is crucial for addressing societal challenges such as
managing disaster response, controlling disease spread, and developing sustainable
urban spaces and infrastructure.

Previous studies in LBSN have utilized various forms of communication data
to analyze the effect of geographic proximity on social interactions [1–3]; and the
structural and geographic characteristics of communication networks at the global
scale [4–8]. In addition to understanding global characteristics of communication
networks, there has been a growing interest in identifying community structures
in human mobility and communication networks [9–11]. Findings of these studies
across various themes highlight strong resemblance of human communication
and mobility patterns, and the constraining effect of administrative boundaries,
topographical features, cultural and linguistic variations on human mobility and
communication [12]. However, the ease of long-distance travel and communica-
tion have generated a highly complex network of human interactions, in which
long-distance and short-distance ties coexist in multiple scales. Also, there is
a hierarchical spatial organization in human interaction networks which reflect
historic, and socio-political borders. Patterns of human connectivity cross these
historic and socio-political borders at multiple geographic scales [9, 10, 13–
15]. Therefore, a comprehensive understanding of human interactions necessitates
methods that take into account the complexity introduced by the multi-scale nature
of human connectivity.

This paper employs a spatially-constrained hierarchical regionalization algorithm
to reveal multi-scale community structures in the interpersonal communication
network on Twitter. The interpersonal communication network was constructed
using a year of reciprocal and geo-located mention tweets in the U.S. between Aug.
2015 and 2016. The results strikingly showed nested borders of cohesive regions
at multiple scales, which are inherent to human communication patterns in the
regional hierarchy of the U.S. Unsurprisingly, people communicated with others
that live nearby, and multi-scale regions overlap with administrative boundaries of
the states, cultural and dialectal regions, and topographical features. Furthermore,
visualization of interregional communication patterns revealed a variety of spatial
connectivity patterns such as poly-centricity, hierarchies, and spanning trees.
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2 Related Work

2.1 Distance and Social Interactions

Social ties and communication are constrained by distance, and most of them
are geographically local [4]. Deville et al. [16] have shown a great similarity
between communication and mobility patterns, and explain the spatial dependencies
by a scaling relationship using power laws. Similarly, Emmerich et al. [17]
analyzed a variety of spatially-embedded networks such as the Internet, power
grid, transportation and communication networks, and found that spatial constraints
are relevant, and the relationship between topological and geographic distance
varies by dimension and scaling factors. Von Landesberger et al. [18] introduced
a flow clustering and visualization approach to identify spatiotemporal variation
in the mobility and communication patterns from tweets and phone call records.
Von Landesberger et al. [18] found similarities in spatiotemporal patterns such as
movements and communication directed from/to central locations given a particular
cycle (e.g., daily, weekly). McGee et al. [19] analyzed the effect of distance on
the strength of ties, and classified Twitter’s utility both as a social network of
geographically nearby friends, and as a news distribution network of individuals
that live far apart. Higher intensity of communication has also been found to be
associated with external factors such as gender, demographics, and socio-economic
status. By analyzing 30 billion online conversations, Leskovec and Horvitz [6] found
that people tend to communicate more with each other when they have similar age,
language, and location; and cross-gender conversations are both more frequent and
of longer duration than conversations with the same gender.

Different forms of communication data have been analyzed to examine geo-
graphic and structural characteristics of human communication. Krings et al. [20]
and Lambiotte et al. [21] revealed that the communication intensity between two
cities can be estimated as a function of population, distance, and predominant
language using phone call records. Barnett et al. [22] also analyzed phone call
records and found that the relationship between homophilly and spatial autocor-
relation is amplified in places with high density of individuals. Garcia-Gavilanes
et al. [23] studied Twitter user mention network, and found that the probability
of two user mentioning each other correlates with power distance. Several studies
[24–26] have shown similar findings, and revealed that user mentions on Twitter
occur between users that are in close geographic proximity. In addition to distance,
Garcia-Gavilanes et al. [23] incorporated economic, cultural and social variables
to predict the volume of communication flows between countries. Herdagdelen et
al. [27] analyzed social, political and geographic characteristics of news-sharing
communities on Twitter, and defined social groups based on local, national and
global level. By analyzing a large Twitter dataset, Groh et al. [28] found that (1)
the social tie strength decreases as expected with increasing spatial distance among
users (2) the information value decreases when the tie strength increases; and (3)
the value of information is independent from the distance.
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2.2 Community Structures in Spatial Networks

In a network, a community is defined as a set of nodes (individuals) in which
the density of connections is stronger internally within the community than it
is externally with the individuals from different communities [29]. Community
detection algorithms without explicit spatial constraints [30] can be applied to
identify communities in spatial networks, which may be multi-part (split) in geog-
raphy. Various modularity-based community detection algorithms have been used
to discover community structures in networks of human mobility [31], commuting
[32], telephone call records [10], friendship networks [11], twitter [33, 34], and
credit card transactions [35]. Communities discovered by these studies are often
geographically confined to nearby regions, however, some of them are multi-part in
geographic space. To bridge the geographical and network aspects of communities,
Croitoru et al. [36] integrated Louvain and density clustering methods to identify
and link community structures in the network (cyber) space and geographic space.
Similarly, gravity models have been applied in non-spatial and modularity-based
community detection algorithms [37] to estimate expected flows as a function
of geographic distance, and derive geographically cohesive community structures.
Alternatively, one can embed spatial constraints in community detection to partition
a spatial network into smaller sets of contiguous nodes or functional regions that
are densely connected internally. In this paper, a spatially-constrained hierarchical
regionalization algorithm [9] is used to reveal multi-scale community structures in
the spatially-embedded reciprocal mention network.

3 Data and Network Extraction

Geo-located tweets in the Contiguous U.S. between Aug. 1, 2015 and Aug. 1, 2016
were collected using the Twitter Streaming API. Location of tweets are available in
two different levels of granularity: exact geographic coordinates, or in a descriptive
manner by listing of a place name such as a city. Stefanidis [38] reported that 0.5 and
3% of the tweets had precise coordinates over a period of two years prior to 2013,
and also highlighted that the use of precise coordinates increased to 16% during
events such as Fukushima disaster in Japan. The dataset used in this paper included
14% of the tweets with precise geographic coordinates, which could potentially be
attributed to increasing adoption of mobile technology. In this paper, tweets with
both exact geographic coordinates and place names that corresponded to an area at
least at city scale were used. Therefore, place names that were at the state or country
level, which corresponded to 18% of the tweets with place names, were excluded.
As a result, the dataset of tweets with exact coordinates and place names that are at
least at city level, consisted of 700 million tweets, and 6.6 million users.

Communication between Twitter users is handled through a set of functions.
Follower, favorite and retweet functions are useful for modeling information



Discovering Multi-Scale Community Structures from the Interpersonal. . . 91

diffusion, whereas mentions and replies allow users to join conversations on Twitter,
wherein direct personal communication could be extracted [36]. A reply is a
response to another user’s tweet that begins with the @username of the original
poster, a mention is a tweet that contains another user’s @username anywhere in
the body of the message. In a user mention, the tweet includes only the location
of the sender who mentions another user (recipient), and a representative location
of the recipient in a mention can be derived only if the recipient has at least one
geo-located tweet in the sample. Also, since individuals are mobile, locations of
tweets from each user are variable across space. In this paper, tweet locations were
overlaid with census data (e.g., county boundaries) to identify a home area for each
user based on the most frequent tweet location. Another commonly used strategy
could be to determine the home location based on tweets posted at night time where
individuals are assumed to be home. In this paper, only the reciprocal mention pairs,
or in other words, back-and-forth conversations [37] were used while the tweets that
were not replied were disregarded.

A data cleaning procedure was performed prior to constructing the geo-located
user mention network on Twitter. Using the metadata provided by the Twitter
Streaming API, the following tweets and users were filtered out: (1) the tweets
authored by non-personal user accounts such as news feeds, weather and emergency
reports, and external applications such as Foursquare and Instagram (2) users with
more than 3000 followers to prevent any bias caused by a large number of user
mentions attracted by a few users, i.e., celebrities [39]. After the cleaning process,
the number of tweets decreased to 290 million (42%). Of these 290 million tweets,
221 million (76%) included a user mention. There were 4.7 million users who were
mentioned in a tweet at least once.

After the initial data cleaning, the following steps were performed to extract the
reciprocal mention network. First, a spatially embedded individual-to-individual
reciprocal mention network was constructed by taking into account the tweets of
users who both send and receive messages between each other. Of the 221 million
mention tweets, 71 million tweets (32%) corresponded to tweets exchanged between
users that both users’ home county can be located. After further filtering to obtain
reciprocal mentions, the number of tweets was reduced to 33 million (46% of
geo-located mentions). The individual reciprocal pairs were then aggregated into a
county-to-county network by using the most frequent county location for each user.
In the county-to-county network, a link illustrates the total number of reciprocal
pairs between two counties.

4 Methodology

A spatially-constrained hierarchical regionalization algorithm [9] was employed
to reveal multi-scale community structures in the spatially-embedded reciprocal
mention network. The regionalization method produces a hierarchy of spatially
contiguous regions, where there are more flows within regions than across regions.
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First, a modularity measure of connection strength was computed rather than using
the raw flow counts (reciprocal pairs) between each pair of locations. This step is
necessary to remove the effect of population by calculating the difference between
the actual flow and the expected volume of flow for each pair of locations (counties).
While a variety of statistical measures can be used to calculate the expected volume
of reciprocal pairs, the following formula that is based on an adjusted flow volume
was employed.
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where EP (O, D) is the expected number of reciprocal pairs between origin O
and destination D, FO is the number of reciprocal pairs between county O and
its connections, FD is the number of reciprocal pairs between county D and its
connections, f (O, D) is the number of reciprocal pairs between county O and
county D, FS is the number of reciprocal pairs between all counties, and
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is used to remove within-county expectations. Finally, modularity of a link O-D is
calculated as:

MOD .O; D/ D AP � EP

where AP is actual number of pairs, and EP is expected number of pairs on link O–
D. Using this formula, the raw counts of reciprocal pairs were transformed into
a county-to-county modularity graph, in which the weight of a link represents
the modularity between two counties. If modularity value is positive the link is
considered to be above expectation, if the value is negative the link is below
expectation. Next, a full-order average linkage algorithm (ALK) [40] was employed
to construct a set of spatially contiguous regions. One can find the algorithmic
details of the clustering method in [40]. The average linkage algorithm is a
clustering method which is used to build a hierarchy of spatially contiguous clusters
by iteratively merging the most connected adjacent clusters. The method outputs
a spatially contiguous tree, where each edge connects two geographic neighbors
and the entire tree is consistent with the cluster hierarchy. Next, each region in the
spatially contiguous tree was partitioned into two regions based on an objective
function. Partitioning starts downward from the top of the clustering tree by
removing edges. To obtain k regions, (k�1) edges must be removed. For example,
four edges must be removed from the initial spatially contiguous tree to derive a
five-region partition. To derive k regions, a hierarch of k sets of region partitions
are obtained. Each of these sets corresponds to a hierarchical level and is embedded
in the next higher level of region partition. Given two regions generated at each
level of the hierarchy, a fine-tuning procedure [9] was performed to modify the
boundaries by moving locations from one region to other to further optimize the
objectives. In this paper, two objectives were used: (1) maximizing within-region
modularity (2) maximizing compactness for each region. The modularity is the
sum of flow-expectation difference for each pair of units inside a region and for all
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regions. Different from the original algorithm [9], we used hierarchical expectation
by recalculating the marginal flows for the new region division after each edge
removal. For example, if an edge removal partitions ten spatial objects into two
regions, region A with three and region B with seven; the marginal flows of the
three locations in A is recalculated as the marginal flows within A, and the same
applies to region B. Therefore, the marginal flows and flow totals of locations in
both regions are dynamically updated according to which region they belong to [41].
The compactness of a region was calculated using the Relative Distance Variance
[42, 43], which was found to outperform the other measures of compactness [44]:

Compactness D
s

Area

2�
�
�2

x C �2
y

�

where Area is the area of the shape, and �2
x and �2

y represent the variance of the
distances between the centroid of the shape, and the x and y coordinate pairs that
define the boundary of the shape.

5 Results

5.1 Network Characteristics and the Distance Effect

Individual-to-individual reciprocal mention network consisted of 1,539,396 users
(nodes) who participated in at least one conversation. There were 2,621,831
undirected edges, where each edge illustrates a reciprocal pair of users who
communicated with each other at least once. Despite the extensive filtering process,
the reciprocal communication network is still well connected [45]. The largest
connected component consisted of 1,271,530 users (83%) and 2,424,224 edges
(92%). This means that 83% of the individuals are connected with each other by a
varying number of steps, and an individual has 1.9 connections on average. Figure 1
illustrates the cumulative density of reciprocal pairs by geographic distance. While
50% of the reciprocal communication happened within the same county, 77%
happened within the same state. This finding agrees with the previous work in that
individuals who engage in conversations are strongly constrained by geographic
space.

5.2 Multi-scale Community Structures

The individual-to-individual network was aggregated into to county-to-county
network of reciprocal communication, and the regionalization algorithm was per-
formed to derive a hierarchy of regions from 1 to 48. The partition with 48 regions
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Fig. 1 Frequency of
geographical distances among
reciprocal pairs. While 50%
of the reciprocal pairs were
within the same county, 77%
were within the same state

Fig. 2 Total within-region modularity for partitions from 1 to 48 regions in the hierarchy

was selected as the maximum number of regions in the hierarchy in order to compare
the data-driven regions to the boundaries of the lower 48 states. The total within-
region modularity for region levels from 1 region to 48 regions highlights patterns of
communication at multiple scales (Fig. 2). The three-region partition (Fig. 3a) splits
the country into East, Central South and Midwest-West divisions. The existence of
the eastern region is likely to be influenced by different time zones, which enforce a
significant constraint in human communication. The partition with eight regions
maximizes the total within-region modularity, and suggests a stable partitioning
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Fig. 3 Hierarchy of interpersonal communication at (a) three regions (b) eight regions. Partition
with eight regions achieves the maximum within-region modularity, and suggests a stable
partitioning of the network for the discovery of community structures
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of the network for the discovery of community structures (Fig. 3b). Eight-region
partition highlights known boundaries as well as unexpected splits that can be
explained by socio-economic, cultural and dialectal, and topographical structure of
the country. The Northeast region almost exactly matches the designated region by
the Census Bureau. This is not surprising as the cultural and political make-up of
the Northeast was established long before other regions, and over several centuries.
The region was formed by various ethnic groups that were spatially clustered, and
tightly connected with each other. On the other hand, the neighboring regions of the
Northeast are largely influenced by the natural boundaries such as the Appalachian
Mountains and Ohio Valley which act like a physical barrier, and catalyst for human
connectivity. Regions in the south were split by the state boundaries of Texas,
Tennessee, Louisiana, Alabama, Mississippi and Georgia. The Northwestern region
was merged with Midwest, which formed the largest region with a minimal effect of
state boundaries. California, Arizona, Nevada, Utah and South of Idaho formed the
Western region. Regardless of the diversity in landscape and climate, the Western
region contains various racial and ethnic groups that are connected with each other
across longer distances.

Figure 4 illustrates 27 regions which were selected based on the most significant
drop (slope) in total within-region modularity around the mid-level regions (Fig. 2).
This partition highlights previously known splits in regional geography of the
U.S. and patches created by metropolitan areas such as Dallas, Los Angeles,

Fig. 4 Interpersonal communication at 27 regions. This partition highlights previously known
splits in regional geography of the U.S. such as the division between northern and southern
California; Carolinas; Great Lakes region including Minnesota, Wisconsin and Michigan; and
patches created by metropolitan areas such as Dallas, Los Angeles, and Washington D.C
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and Washington D.C. There are many known splits in this partition such as the
division between northern and southern California; Carolinas; Great Lakes region
including Minnesota, Wisconsin and Michigan; the combined Kansas-Missouri
region centered on the two Kansas Cities and Springfield, Missouri; and the
separation of New York City from the rest of New York.

Figure 5a illustrates the partition with 48 regions in order to compare with the
boundaries of the lower 48 states of the U.S. While the regions in the east are
partitioned into smaller regions, regions in the west are still very large due to lower
population, thus, communication sparsity. Figure 5b illustrates the overlap between
the state borders and the boundaries of the 48 data-driven regions. The overlap
between the state boundaries and 48 data-driven regions was found to be 45%. The
states with the most overlap with the region boundaries are Pennsylvania (83%),
New Jersey (80%), South Carolina (80%) and Arizona (78%) (Fig. 5b). While some
states were split into smaller regions, some were merged to form larger regions that
contain multiple states. For example, Texas was split into three regions influenced
by the metropolitan cores of Houston, San Antonio, and Dallas. California was
split into San Francisco, Central Valley and the rest of California that is pulled by
Los Angeles. Florida was split into two regions as a result of the pull effect of the
metropolitan areas of Miami, and Northern Florida (i.e., Orlando, and Jacksonville).
Small deviations from state borders are caused by the swapping of counties as a
result of the pull-effect of a metropolitan core in an adjacent state. Some states were
merged to form larger regions that include multiple states. Most of these examples
are from the Great Plains. A common characteristic of these regions is the low
population density, and thus, less volume of communication.

5.3 Spatial Connectivity Between Regions

Figure 6 illustrates the patterns of spatial connectivity between 48 regions. A
modularity threshold of 500 was used to reduce the cluttering and visualize flows
that are above expectation (i.e., observed—expected >500). A circle symbol is
placed at the population-weighted centroid of a region and the size of the circle is
proportional to the within-region modularity. Modularity flows between the regions
are represented by flow lines with varying width proportional to the modularity
value. Background choropleth map illustrates the region boundaries, and the color
value is used to symbolize the density of reciprocal pairs within each region
using quantile classification. The structure of flows follow a variety of forms.
For example, the Texas Triangle portrays a polycentric pattern, where there are
approximately equal strength of connections (flows) between the three metropolitan
regions of Houston, San Antonio, and Dallas. On the other hand, connections in
California follow a more hierarchical structure, where the hinterland of Los Angeles
is tightly connected with the hubs of Central Valley, San Francisco, and Arizona; the
connections between these hubs are not as strong. The regions in the East Coast, on
the other hand, follow a linear pattern similar to a spanning tree, where each of the
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Fig. 5 Comparison of state borders with the boundaries of the 48 data-driven regions of user
mention tweets. (a) Color-coded areas correspond to the boundary of the states, black lines
correspond to the boundaries of data-driven regions discovered by the regionalization algorithm.
(b) Red lines illustrate the overlap between the state boundaries and the 48 regions, and the color
value symbolizes the percentage of overlap for each state. The overlap between the state boundaries
and 48 data-driven regions was found to be 45%
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Fig. 6 Reciprocal mentions between 48 regions. A circle symbol is placed at the population-
weighted centroid based on the number of users within each region, and the size of the circle
is proportional to within-region modularity. Modularity flows between the regions are represented
by flow lines with varying width proportional to the modularity value. Background choropleth map
illustrates the region boundaries, and the color value is used to symbolize the density of reciprocal
pairs within each region using quantile classification

regions are strongly connected to one of its close-by neighbors along the east coast.
The only exception to this pattern are the big hubs of New York City and New Jersey,
which follow a hierarchical pattern. Chicago also follows a hierarchical pattern of
connectivity, whereas Cleveland, Columbus and West Virginia follow a polycentric
one with strong connections among each other.

6 Discussion and Conclusion

A hierarchical regionalization algorithm was used to identify multi-scale com-
munity structures within the interpersonal communication network on Twitter.
The results strikingly showed cohesive regions in different scales, which overlap
with administrative boundaries of the states, cultural and dialectal regions, and
topographical features. Although the regionalization process did not involve state
level information, 45% of the state borders overlapped with the data-driven regions,
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which is similar to the findings of the previous studies that analyzed a variety of
human mobility and communication datasets [9, 13]. Also, the patterns of spatial
connectivity between the 48 regions revealed a variety of structural patterns such
as poly-centricity, hierarchies, and spanning trees. Discovery of such patterns is
essential for understanding of the complex social system that is influenced by long-
distance ties.

There are a number of limitations in this study. The first limitation is well-known:
demographics of twitter users are not reflective of the general population [46].
Twitter is only a small portion of interpersonal communication which mostly happen
in person, through phone calls, text messaging, and video conferencing. However,
one can analyze any form of communication data with spatial information in a
similar manner without revealing privacy of individuals, and discover community
structures in a spatial hierarchy. Although a large volume of geo-located tweets
were used, these tweets represent only a sample of all tweets (approximately 1%).
Moreover, constrained by opt-in behavior of users for geographic location, a large
portion of user mentions was not represented in the datasets used in this study due
to the inability to locate all mention pairs. For future work, there is a need to take
into account the changing frequency of communication over time. In addition to
studying the temporal aspect of the network, there is also a need to examine the
semantics of the communication using the content of the tweets. By analyzing the
content of the conversations using text mining methods one can understand how
online conversations vary based on pairs of users in different locations, and different
time periods. Such information can help identify both linguistic and topical variation
across regions, and improve our understanding of complex semantics in human
communication.
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