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Spatial interactions such as migration and airline transportation naturally form a location-to-location
network (graph) in which a node represents a location (or an area) and a link represents an interaction
(flow) between two locations. Locational measures, such as net-flow, centrality, and entropy, are often
derived to understand the structural characteristics and the roles of locations in spatial interaction net-
works. However, due to the small-area problem and the dramatic difference in location sizes (such as
population), derived locational measures often exhibit spurious variations, which may conceal the under-
lying spatial and network structures. This paper introduces a new approach to smoothing locational mea-
sures in spatial interaction networks. Different from conventional spatial kernel methods, the new
method first smoothes the flows to/from each neighborhood and then calculates its network measure
with the smoothed flows. We use county-to-county migration data in the US to demonstrate and evaluate
the new smoothing approach. With smoothed net migration rate and entropy measure for each county,
we can discover natural regions of attraction (or depletion) and other structural characteristics that the
original (unsmoothed) measures fail to reveal. Furthermore, with the new approach, one can also smooth
spatial interactions within sub-populations (e.g., different age groups), which are often sparse and impos-
sible to derive meaningful measures if not properly smoothed.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Spatial interactions, such as migration and airline travel, natu-
rally form a location-to-location network (graph). In the network
a node represents a location (or an area) and a link represents an
interaction (flow) between two locations. Locational measures,
including both simple ones such as in-flow, out-flow, and net-flow
and more complicated ones such as centrality, entropy and assort-
ativity, are often derived to understand the structural characteris-
tics and roles of locations in generating interactions. However, due
to the dramatic differences in size (such as population) among
locations and the small-area problem, locational measures derived
with the original flow data often exhibit spurious variations and
may not be able to reveal the true underlying spatial and network
structures.

Scaling approaches such as iterative proportional fitting proce-
dure (IPFP) are often employed (Clark, 1982; Pandit, 1994) to re-
move the confounding effects of origin and destination sizes on
flows. However, such transformation procedures may distort the
relative significances of nodes in a network (Fischer, Essletzbichler,
Gassler, & Trichtl, 1993; Holmes, 1978). Alternatively, several stud-
ies have applied existing spatial kernel smoothing methods to re-
move spurious data variations (Porta et al., 2009; Sohn & Kim,
2010), which treat a locational measure (e.g., centrality) as a regu-
lar attribute and apply a traditional spatial kernel smoothing meth-
od to directly smooth the derived measure values. However,
directly smoothing the measure values may generate unreliable
or even misleading results for two main reasons. First, the original
measure values may be unstable due to varying unit sizes and
small flows between units. Second, traditional smoothing methods
do not differentiate flows within and beyond a neighborhood and it
is inappropriate to directly smooth original locational measures.
For example, the net flow ratio (i.e., net flow/total flow) for a neigh-
borhood (i.e., a group of contiguous spatial units) cannot be calcu-
lated as the average of unit-level net flow ratios within the
neighborhood.

We introduce a new approach to smoothing locational mea-
sures in spatially embedded networks. For each location, the new
method first smoothes the flows to/from that location considering
flows to/from its neighborhood and then calculates its locational
measure with the smoothed flows. The same procedure is repeated
for each location, using the original flows (i.e., the smoothed flows
for the previous location are not used). The neighborhood of a loca-
tion is defined as the minimum set of nearest neighbors that meet
a size constraint (such as a minimum population threshold or a
distance threshold). To demonstrate the usefulness of the
approach, we use the county-to-county migration data in the US
and smooth the net migration rate and entropy measure for each
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county. The smoothed results clearly help discover natural regions
of attraction (and depletion) and a variety of structural character-
istics that the original measures fail to reveal. Furthermore, we also
smooth measures for sub-populations (e.g., different age groups),
which can help discover not only distinctive regions of attraction
and depletion but also show that attractiveness changes in both
geographic space and multivariate space (e.g., migrants of different
ages).
2. Related work

2.1. Locational measures

Locational measures (network/graph measures) have been
extensively used in spatial interaction analysis to examine struc-
tural characteristics such as centrality (Hughes, 1993; Irwin &
Hughes, 1992), entropy (Limtanakool, Schwanen, & Dijst, 2009),
connectivity (Estrada & Bodin, 2008), assortativity and disassort-
ativity (Fagiolo, Reyes, & Schiavo, 2009) and weighted clustering
coefficient (De Montis, Barthelemy, Chessa, & Vespignani, 2007).
Similar measures have also been introduced in application-specific
domains such as migration. For example, many index approaches
have been developed and used to quantify migration characteris-
tics such as spatial focusing of migration streams (Plane & Heins,
2003; Plane & Mulligan, 1997; Rogers, 1992; Rogers & Raymer,
1998; Rogers & Sweeney, 1998). The index measures are usually
derived for each location with the graph data (e.g., migration net-
work). Commonly-used measures include net migration rate (Rog-
ers, 1992), Gini index (Plane & Mulligan, 1997), coefficient
variation (Long, 1988) and migration efficiency (Plane & Rogerson,
1991). However, due to the dramatic difference in unit size (e.g.,
population) and the small-area problem, derived locational mea-
sures often exhibit spurious data variations, and may conceal (in-
stead of reveal) the true underlying spatial and network
structures.
2.2. Iterative proportional fitting procedure (IPFP)

In order to remove the effects of location sizes on flows and cap-
ture patterns that are not necessarily associated with larger vol-
umes, scaling approaches have been employed (Clark, 1982;
Pandit, 1994; Slater, 1975). The most commonly used scaling ap-
proach is the iterative proportional fitting procedure (IPFP), which
can be used to standardize a migration network by transforming
the flows among locations so that all locations have the same in-
flow and outflow. Scaling does not change the cross-product ratio
of the diagonal elements of the original matrix, and as a result
the flow structure is preserved. However, IPFP transformation
can distort the relative significances of nodes in a spatial interac-
tion network in which the variability of node sizes is large (Fischer
et al., 1993; Holmes, 1978).
2.3. Kernel density estimation and smoothing

Kernel density estimation or smoothing methods are commonly
used for smoothing lattice spatial data, e.g., point- or area-based
location attribute data, which are different from connection-based
spatial interaction data. A spatial kernel smoothing method recal-
culates the attribute value of a location using a weighted average
of the attribute values of its spatial neighbors (Borruso & Schoier,
2004; Carlos, Shi, Sargent, Tanski, & Berke, 2010), where the weight
is calculated considering geographic distance. Alternative to spatial
kernel smoothing, locally weighted average smoothing that uses a
background value such as population to calculate weights is com-
monly used in smoothing disease rates (Kafadar, 1994; Shi, 2010).
Bandwidth and kernel function selection are two important
parameters in a spatial kernel smoothing method. The choice of
the bandwidth determines the maximum radius (e.g., the extent
of the neighborhood) or the number of neighbors that is considered
to have an effect on the point of interest. The kernel function deter-
mines how each neighboring observation will be weighted and
considered in the smoothing process. Previous research on kernel
density estimation proved that the performance of the estimation
is greatly affected by the choice of the bandwidth while the kernel
function usually does not have a significance effect (Bors & Nasios,
2009; Silverman, 1986).

The most commonly used kernel functions include Gaussian
kernel, triangular kernel, and Epanechnikov’s kernel (Danese,
Lazzari, & Murgante, 2008; Wand & Jones, 1995). There are two
main types of bandwidth: fixed and adaptive. In a fixed-band-
width approach, the radius that defines the extent of the neigh-
borhood is assumed to be the same throughout the dataset. An
adaptive bandwidth allows the radius to vary from one data point
to another. Domain knowledge is commonly used to obtain a
fixed bandwidth. However, it is widely acknowledged that a fixed
bandwidth causes biased estimations for most spatial data sets,
where the underlying density often exhibit significant spatial het-
erogeneity (Davies & Hazelton, 2010). Alternatively, various adap-
tive bandwidth approaches have been developed (Abramson,
1982; Carlos et al., 2010; Sain & Scott, 1996; Yang, Luan, & Li,
2010), which can be categorized into model-based and domain-
based approaches.

In model-based bandwidth selection approaches, the goal is to
improve a statistical model fit such as in geographically weighted
regression. A statistical criterion is often used to provide guidance
on selecting an appropriate bandwidth among a large number of
possible bandwidth values (D’Amico and Ferrigno, 1990). Cross-
validation (CV), Akaike Information Criterion (AICc) and Bayesian
Information Criterion (BIC) are among the most commonly used
criteria to select an appropriate bandwidth for local spatial statis-
tics such as geographically weighted regression (Fotheringham,
Brunsdon, & Charlton, 2002). In model-based approaches, an
appropriate bandwidth is the one that gives the best model fit
among a large number of possible bandwidth values. However,
model-based approaches are not applicable for spatial smoothing
in which there is no statistical model to fit and the goal is to
smooth each unit with the neighborhood values. In domain-based
bandwidth selection approaches, a relevant attribute (e.g., popula-
tion) is used to determine the bandwidth. For example, to account
for the underlying heterogeneous population distribution common
in public health research, some studies (Carlos et al., 2010; Shi,
2009) have utilized a population threshold (i.e., the size for a
neighborhood) to determine the adaptive bandwidth. Therefore,
the bandwidth stops expanding when the threshold value is
reached.
2.4. Smoothing network measures

Traditional smoothing methods introduced above have been
adopted and used in transportation analysis research (Porta et al.,
2009; Sohn & Kim, 2010) in order to accommodate the neighboring
effect in calculating centrality measures. Existing smoothing prac-
tices treat the locational network measure (e.g., centrality) as a
regular attribute and apply an existing spatial kernel smoothing
method to directly smooth each locational measure with neighbor-
ing values. However, since a network measure summarizes the
structure of the flow incidents on a node in a network, it is inap-
propriate to directly smooth measure values without considering
the flow structure within and beyond the neighborhood.
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3. Methodology

The new smoothing approach consists of four steps. First, for a
location (node) s in a spatial interaction network, identify its spa-
tial neighborhood Ns based on a geographic distance threshold
(fixed-bandwidth) or a size threshold such as a minimum popula-
tion (adaptive-bandwidth). The neighborhood Ns is represented
with a gray circle in Fig. 1.

Second, temporarily remove the flows within the neighborhood,
i.e., those with both origin and destination in the same neighbor-
hood. Note that these flows are excluded only for this specific
neighborhood and are still eligible for consideration for other
neighborhoods. Then we weigh flows from/to the nodes (including
s) in the neighborhood based on their distances to location s. The
result is a smoothed sub-graph, in which flows to/from location s
are modified considering flows to/from its neighbors. Fig. 1B illus-
trates the smoothed sub-graph of a location s where flows within
Ns are removed and flows to/from Ns (shown by dashed lines) are
weighted and partially considered as flows to/from location s.

Third, calculate the needed network measure for location s with
the smoothed sub-graph. In other words, the weighted flows to/
from the neighborhood are used in calculating the network mea-
sure for the location.

Fourth, repeat the above three-step process for each location
(node). After the measure is obtained for a location, the smoothed
flows are discarded and their original flows are restored. In other
words, the smoothing (Step 2) is only temporary for each
neighborhood.

In following subsections, we introduce each of the steps. To
demonstrate the approach, we use county-to-county domestic
migration data between 1995 and 2000 in the contagious US pro-
vided by census surveys, which includes 3075 counties (of the 48
continental states and Washington DC) and millions of migrants
moving between these counties. Each data record has an origin
county, a destination county, the count of migrants, and migrant
characteristics, e.g., counts of migrants for each income level or
age group that move from the origin to the destination.
Fig. 2. Illustration of the bandwidth selection process. The neighborhood Ns of a
location s is the smallest set of nearest neighbors that has a total population P(Ns)
greater than a given population threshold p, which is 100 in this example. The map
shows the neighborhoods of three locations r, s, and t.
3.1. Bandwidth selection

There are two potential alternatives for choosing the band-
width. If applicable to the context of the spatial interaction net-
work, a domain-based approach could be employed, which uses
an attribute and a threshold value to configure the size of a neigh-
borhood, e.g., the population or total flow of a neighborhood. Alter-
natively, a data-driven approach could be employed to determine
the bandwidth according to the properties of the spatial interac-
tion network. In this research we primarily focus on the first ap-
proach (domain-based) to configure neighborhood and discussed
the alternative (data-driven) approach in the conclusion section.
Fig. 1. An illustration of the smoothing approach for spatial interaction data. The left ma
location (in red, at the center of the circle) and its neighborhood (gray circle). Dashed
considered as flows to/from the location in red and used in calculating the network measu
the reader is referred to the web version of this article.)
In spatial interaction data, locational measures can be sensitive
to the volume of flows or population of involved locations. It is
more meaningful to make each neighborhood be of a similar and
sufficiently large size so that the flows to/from different neighbor-
hoods can be compared. Therefore, we employ a domain-based ap-
proach and use a population threshold to determine the adaptive
bandwidth (or neighborhood size) for each unit. Other than popu-
lation, the total volume of in-flow or out-flow may also be used for
defining the size threshold. The choice depends on its applicability
to the locational measure. For example, a net migration rate repre-
sents the net-flow of a location normalized by its population, in
which case it makes sense to make each neighborhood have a sim-
ilar population.

Let the population threshold be p. The neighborhood Ns of a
location s is the smallest set of nearest neighbors that has a total
population P(Ns) greater than p. Specifically, the neighborhood Ns

for unit s is constructed with two steps: (1) initially, let Ns = {s}and
sort all other units based on their distance to s; (2) the nearest
neighbors are added to Ns until P(Ns) > p. The bandwidth for s is
then the distance to the farthest unit in its neighborhood Ns.

For cases where the population attribute does not exist or is
inappropriate for the context of the analysis, alternative variables
can be used to define neighborhood (bandwidth). For example,
the in-flow entropy measure quantifies the diversity of flows that
go into a location. Thus, it is appropriate to use the total in-flow
to a neighborhood (excluding flows within the neighborhood) to
define the bandwidth in calculating the in-flow entropy measure.
Similarly, for the out-flow entropy measure we may use the total
volume of out-flows from a neighborhood to define the adaptive
bandwidth.
p shows the original data. The map on the right shows smoothed flows related to a
lines represent weighted flows to/from the neighborhood that are now partially

re for the location. (For interpretation of the references to color in this figure legend,



Fig. 3. Three commonly used kernel functions. (A) Uniform: Wsi = 1 if dsi 6 Bs; else 0. Bs is the bandwidth and dsi is the distance between location s and its neighbor i. (B)
Gaussian: Wsi = exp(�(dsi/Bs)2) if dsi 6 Bs; else 0. (C) Triangular: Wsi = 1 � |dsi/Bs|, if dsi 6 Bs; else 0.

Fig. 4. An illustration of a smoothed sub-graph. Dashed lines are newly added
edges.

C. Koylu, D. Guo / Computers, Environment and Urban Systems 41 (2013) 12–25 15
Fig. 2 illustrates the bandwidth selection process with a simple
data set. Let the population threshold p = 100. Three nodes r, s, t are
highlighted and their population values are P(r) = 15, P(s) = 40 and
P(t) = 130. Since node t is sufficiently large, it forms a neighborhood
by itself and thus no smoothing is needed. Nodes r or s need to add
neighbors to meet the threshold p. Following the procedure out-
lined above, we have Nr = {r, s, d, a, b, f, g, h} and Ns = {s, a, e, r, b,
c}, with P(Nr) = 110 and P(Ns) = 105.

Choosing the population threshold for determining bandwidth
involves a tradeoff between over-smoothing and under-smoothing.
On one hand, the bandwidth should be sufficiently large to avoid
artifacts caused by small neighborhood and under-smoothing. On
the other hand, if the neighborhood is too large, interesting local
patterns may disappear. Smoothing results change in a predictable
way with decreasing/increasing bandwidth, with larger band-
widths generating more smoothed result (we will show the exper-
iments with different bandwidths in Section 4.4). For the county-
to-county migration data of the US, we experimented with differ-
ent population thresholds to examine flow patterns at different
scales and chose a population threshold of one million, which is
about the population of a medium-sized metropolitan area.

3.2. Smoothing flows

For a specific location s and its neighborhood Ns, s 2 Ns, we
smooth the flows that go into or out of the neighborhood. Let Bs

be the bandwidth. First, flows within Ns are temporarily removed,
i.e., a flow is ignored if its origin and destination are both in Ns.
Removing flows within the neighborhood is necessary because
the entire neighborhood is considered as a single unit (i.e., location
s) in calculating a network measure. Second, a kernel function is
incorporated to weigh each flow from/to Ns based on the distance
between s and the flow origin or destination (whichever is inside
Ns). In other words, each flow to/from Ns is partially (according
to its weight) considered as a flow to location s even if the flow
does not directly involve s in the original data, which essentially
reassigns weights to existing edges or adds new edges to location s.

The most commonly used kernel functions include the uniform
kernel, the Gaussian kernel and triangular kernel (Fig. 3). Previous
research and our experiments show that the smoothing results are
not significantly affected by the choice of models (Bors & Nasios,
2009; Silverman, 1986). In this research, we have experimented
with the above three models and report the results using the
Gaussian kernel.

In Fig. 4 we show an example of a smooth graph that includes
the connections to/from a location s (in red2) and its neighborhood
Ns (gray circle). In addition to edges (a, s) and (s, k) that exist in the
original data, the smoothed sub-graph for location s also has newly
added edges (b, s), (c, s), (j, s) and (s, i), which will be included in cal-
culating the location measure for s. The value for the new ‘‘flow’’ (b,
s), for example, is the product of the value of flow (b, e) and its
2 For interpretation of color in Figs. 4–6 and 12–14, the reader is referred to the
web version of this article.
weight Wse according to a chosen kernel model. Note that flows
within Ns are ignored.

3.3. Calculating a locational measure

Using the smoothed sub-graphs, it is straightforward to calcu-
late a variety of network measures for the focal location, which
are more stable (with less spurious variation) than those calculated
without smoothing. Here we use the net migration rate and an en-
tropy measure as two case studies to demonstrate the approach
and evaluate its results.

3.4. Net migration rate

Net migration rate is the difference between in-migration (in-
flow) and out-migration (out-flow) of an area in a period of time,
divided by the population of the area. Net migration rate is usually
multiplied by 1000 to represent the number of migrants per 1000
inhabitants. To obtain a smoothed net migration rate for a neigh-
borhood, we smooth the flows for the neighborhood (as introduced
earlier), calculate the inflow and outflow of the neighborhood with
the smoothed graph, and then divide (inflow � outflow) with the
total weighted population of the neighborhood of s, denoted by
P(Ns). In other words, the same weighting is applied to both the
flows and the population.

3.5. Entropy

The variation of flow volumes across the links to/from a location
can provide important insights about the structure of the network
and the characteristic of the location. Local entropy measures (Lim-
tanakool et al., 2009) are often used for this purpose. Entropy of a
location s (i.e., its neighborhood) is calculated using the formula in
the following equation:

EIs ¼ �
XJ

j¼1

xsj lnðxsjÞ
lnðJ � 1� nÞ ð1Þ
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where EIs is the Entropy Index of location s, xsj is proportion of flow
sj in relation to the total flow connected to s, J is the total number of
locations in the network, and n is the number of locations inside the
neighborhood Ns. The maximum number of links that location s
may have is J � 1 � n. EI measures the variation in the magnitude
of interactions across the connections of a node. The index value
ranges between 0 and 1. A small inflow entropy value indicates that
the flows to the location vary greatly (with large flows from a few
locations and small flows from elsewhere), whereas a large inflow
entropy value indicates that a location receives similar amount of
flows from all locations. Entropy can also be calculated for out-
flows or all flows (inflow and outflow together).

With the county-to-county migration data in the US, we calcu-
late and map the smoothed net migration rate and the entropy
measure for each county, which clearly help discover natural re-
gions of attraction or depletion and a variety of structural charac-
teristics that the original measures fail to reveal. Furthermore, our
smoothing method make it possible to calculate measures for a
subset of flows (e.g., flows of a specific age group), which are
impossible to obtain without smoothing due to the small-area
problem.

4. Results

4.1. Smoothed net migration rate

In this section, we show the smoothed net migration rates and
compare them to the original measures. For the county-to-county
migration dataset of the US, we chose a population threshold of
one million, which approximates the population of a medium-
sized metropolitan area. To enable comparison of the two mea-
sures, we used a custom classification for both in which 0 was cho-
sen as the critical midpoint and the Jenks natural breaks
classification was applied separately to each side of the midpoint.
A diverging color scheme is used to represent different value
ranges, with red representing attraction and blue for depletion
(i.e., negative net migration rate).

The original net migration rates are shown in Fig. 5, in which it
is difficult to distinguish regions of attraction and depletion be-
cause of unstable values caused by the dramatic population differ-
ences among counties and the small-area problem in the data. On
the contrary, the smoothed net migration rates (with a neighbor-
hood size of one million population) shown in Fig. 6 can clearly re-
veal the regions of attraction and depletion with differing
magnitudes. For example, major attraction regions (i.e., those of
darker red hues) include Florida, Arizona, Greater Las Vegas region,
north-east outskirts of the Atlanta metropolitan area, counties sur-
rounding Denver, Dallas, Houston and San Antonio, and the metro-
politan counties in North Carolina. On the other hand, large
metropolitan counties such as Los Angeles, New York City, Chicago
and Miami and rural counties in Montana, North and South Dakota
can be easily recognized as regions of depletion. The smoothing re-
sults also reveal contrasting patterns locally within metropolitan
areas, such as Chicago, Denver, Washington DC, Dallas and Miami,
where the core metropolitan areas have a push effect on migrants
while the counties surrounding these core metropolitan areas have
a pull effect on migrants as a result of suburbanization and urban
sprawl.

4.2. Smoothed net migration rate for sub-populations

Migration patterns of sub-populations such as different races,
ethnicities or age groups are expected to be spatially and structur-
ally different from each other. Locational measures for sub-popula-
tion flows are even less reliable because of much smaller volumes
of flows and small base populations. To illustrate the effectiveness
of our approach to overcome this problem, we smooth the flows
within each age group, calculate net migration rate with the
smoothed flows and compare them to their original net migration
rate results. After examining the smoothing results for each age
group, we focus on two age groups, namely 20–24 and 25–29, be-
cause they have the highest mobility and distinctive migration pat-
terns (we will explain this below in Fig. 9). The original net
migration rates for age groups 20–24 and 25–29 are shown in
Figs. 7 and 8. It is difficult to interpret both maps because of unsta-
ble measure values that have spurious variation.

After we smooth net migration rates within each age group, we
use box-plots of the smoothed measure results to give an overall
understanding of migration behaviors for different age groups by
comparing their distributions (Fig. 9). One of the most interesting
and contrasting patterns that can be observed in Fig. 9 are those
for age 20–24 and age 25–29. On one hand, the age group 20–24
has a large number of outliers with very high positive net migra-
tion rates and a larger upper quartile with a median around 0.
On the other hand, age group 25–29 has a lower median below
0, a larger lower quartile and some outliers with negative net
migration rates. The migration flows within these two age groups
are likely related to education and employment specific flows.
From Fig. 9, we may also observe patterns related to elderly migra-
tion (Plane & Jurjevich, 2009; Rogers & Sweeney, 1998). For exam-
ple, there are outliers that disproportionately attract migrants of
age groups 55–75. We can map the net migration rates for each
age group to further investigate the observed patterns. Due to lim-
ited space, we only show the smoothed results for age groups 20–
24 (Fig. 10) and 25–29 (Fig. 11).

The smoothing results highlight distinctive patterns that agree
with existing migration studies. For example, migration of students
and young adults for education and employment purposes (Slater,
1976; Whisler, Waldorf, Mulligan, & Plane, 2008) can be seen
clearly in Figs. 10 and 11. While metropolitan areas attract age
group 25–29 because of employment opportunities, places with a
substantial number of universities attract age group 20–24. This
divide can be seen in many places across the country. For example,
in Texas, though the region surrounding Austin attracts age group
20–24, there is an opposite tendency among age group 25–29 to
move away from this region and possibly targeting the Dallas
Metropolitan area. A similar pattern is also observed in Florida. Be-
cause of the presence of many university campuses, the region that
includes counties around Tallahassee, Gainesville and Jacksonville
in Florida attracts age group 20–24, whereas age group 25–29 mi-
grate from this region, targeting the Orlando and Miami Metropol-
itan areas for jobs. Also, metropolitan areas including Las Vegas,
Atlanta, Raleigh, Charlotte, Denver and Minneapolis also attract
both of the age groups 20–24 and 25–29.

4.3. Smoothed entropy

In addition to discovering regions of attraction and depletion, it is
also important to gain insight into the structure of flows. A variety of
measures such as entropy (Limtanakool et al., 2009), Gini index
(Plane & Mulligan, 1997) and coefficient variation (Long, 1988) could
be used to measure the diversity of flow volumes among the links to/
from a location. In this section, we use the inflow and outflow entro-
py measures to capture the differentiation of the magnitude be-
tween the links to/from each location. We also compare the
smoothed entropy measures to their original measure results. We
use the total volume of in-flow to determine the neighborhood in
calculating in-flow entropy whereas we use the total volume of
out-flow to determine the neighborhood in calculating out-flow en-
tropy. To balance between over-smoothing and under-smoothing
we heuristically chose 100,000 as a threshold volume both for in-
flow and out-flow values to determine the neighborhood for



Fig. 5. Original net migration rates.

Fig. 6. Smoothed net migration rates.
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Fig. 7. Original net migration rates for age group 20–24.

Fig. 8. Original net migration rates for age group 25–29.
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Fig. 9. Box-plots of smoothed net migration rate results for age groups.

Fig. 10. Smoothed net migration rate for age group 20–24.
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calculating in-flow and out-flow entropy measures. To enable com-
parison, we again use the Jenks natural breaks classification with a
sequential color scheme, with darker colors of red representing
low entropy values (which highlight spatially focused (targeted)
flows) and darker colors of blue for high entropy values (which show
more evenly spread flows to/from the other locations).
The original inflow entropy and outflow entropy are shown in
Figs. 12 and 13, respectively. Both maps are difficult to interpret
because of large and spurious variation in measure values. More-
over, the entropy values correlate with size and, as a result, smaller
counties have always relatively low entropy since they normally
have much less links than larger counties (see Eq. (1)). Similarly,



Fig. 11. Smoothed net migration rate for age group 25–29.

Fig. 12. Original in-flow entropy values.
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Fig. 13. Original out-flow entropy values.

Fig. 14. Smoothed in-flow entropy.
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larger places tend to have connections with many other places, and
hence the entropy value is larger (i.e., more evenly spread).

The smoothed in flow entropy values shown in Fig. 14 show dis-
tinctive and different patterns from their original unsmoothed
measures. It is interesting to see that the low inflow entropy clus-
ters (red color) center around a number of major cities (such as
Atlanta, Houston, San Diego and Chicago) but exclude the urban
counties at each cluster center. The low entropy values indicate
that these places draw focused flows, i.e., major flows are from cer-
tain places. On the other hand, clusters of high entropy values (blue
color) represent places that receive migrants in similar volumes
from many locations (i.e., more evenly spread). From Fig. 14, we
also observe contrasting patterns within some regions. For exam-
ple, while the core counties of the Chicago, Houston, San Antonio
and Dallas metropolitan areas have high entropy values, the coun-
ties surrounding these metropolitan cores have low entropy val-
ues. This could potentially be explained by the tendency of
metropolitan cores to attract migrants (especially young adults)
in similar volumes from many places in the country as opposed
to the tendency of the outskirts attracting migrants (e.g., families
and retirees who prefer suburban lifestyle) from metropolitan
cores disproportionately more than they attract migrants from
other places.

The overall extents of the clusters in the smoothed out-flow en-
tropy map (Fig. 15) are similar to the ones in the smoothed in-flow
entropy map. However, there are local differences between the
clusters of in-flow and out-flow entropy values. For example, in
the Dallas, Atlanta and Chicago metropolitan areas, we observe
lower in-flow entropy values for the periphery of some metropol-
itan areas and higher in-flow entropy values for the metropolitan
cores. However, we observe the opposite of this pattern in the out-
flow entropy map where the cores of Dallas, Atlanta and Chicago
metropolitan areas have lower out-flow entropy as opposed to
the counties surrounding them. Thus, this pattern indicates that
Fig. 15. Smoothed ou
migrants leaving these cores are more targeted (focused) towards
a fewer number of places in much higher volumes. In addition to
these contrasting patterns, we observe that high outflow entropy
clusters match the high inflow entropy clusters, indicating that mi-
grants leaving these places do not target certain areas and mi-
grants moving into these places come from many locations in
similar volumes.

4.4. Sensitivity analysis

In this section we evaluate the sensitivity to population thresh-
olds and compare the results of our approach (smoothing local net-
work and then calculating the measure) and the conventional
approach (calculating measures and then smoothing measures).
Due to limited space we only present the sensitivity analysis re-
sults for smoothing net migration rate. In order to select an optimal
population threshold (bandwidth) that reveals general patterns in
the data and reduces the instability caused by small populations
(Shi et al., 2007), we experimented with a series of population
thresholds using both the conventional smoothing approach and
our approach. Both approaches use the same spatial kernel and
the same bandwidth. We plot the variance of smoothed rates from
both approaches using a series of population thresholds. Plot B in
Fig. 16 shows the total variance of the resulting rates, whereas Plot
A shows the difference in variances between two consecutive
thresholds. As expected, Plot B shows that variance decreases as
population bandwidth increases. Our approach produces rates
with less variance than the conventional result since the latter still
uses the original instable rates caused by small base population.
Although the general trend is that variance decreases with larger
thresholds, Plot A reveals several thresholds where the variance
reaches a local minimum, including 300 k, 800 k, 1 million and
1.5 million. Smoothing results at these different thresholds show
patterns at different scale levels, from finer to coarser resolutions.
t-flow entropy.



Fig. 16. The variance of smoothed net migration rates for a series of population sizes. (A) The difference in variance between two consecutive thresholds. (B) The total
variance for each population size (threshold).
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In this paper, we only present the results with a threshold of 1 mil-
lion, which approximates the population of a medium-sized
metropolitan area.

4.5. Comparison with conventional methods

In addition to analyzing the sensitivity to population thresholds,
we also compare our approach to a conventional smoothing ap-
proach using net migration rate and inflow entropy measures.
Fig. 17 shows the two results (conventional approach vs. our ap-
Fig. 17. Comparison of conventional smoothing result (left) and our result (right) for n
differences between the two results.
proach) for smoothed net migration rates for all population. In or-
der to allow comparison, both methods use the same bandwidth
(i.e., one million) and the same spatial kernel function (i.e., Gauss-
ian). The overall patterns are similar in both maps. However, for
the conventional approach the effect of small base populations
can still be observed in many places such as the surrounding coun-
ties of Salt Lake City, UT, Albuquerque, NM and Houston, TX
(Fig. 17, Left), where smoothed rates are affected by the original
unstable rates (see Fig. 5) and the flows within the neighborhood.
Our approach eliminates the effect of small base populations by
et migration rates. The overall patterns are similar but there are significant local



Fig. 18. Comparison of conventional smoothing result (left map) and our result (right map) for inflow entropy. The patterns are dramatically different.
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treating the neighborhood as whole, removing internal flows, and
calculating the measure based on smoothed network (Figs. 6 and
17 (right)).

The effect of small base populations is more dramatic for the
entropy measure, causing small areas to have very small entropy
values due to the sparse flows to/from those areas. This can easily
be seen in the original measure result as well as the smoothing re-
sult of the conventional approach (Fig. 18, Left), which produces
large clusters of low entropy values which are highly correlated
with the presence of small counties and their unstable rates (see
Fig. 12). Our approach, on the other hand, first smoothes the net-
work related to a neighborhood and then calculates its entropy
measure. As such, our approach reduces the effect of the small-area
problem and reveals spatial clusters of low inflow entropy values,
indicating places that draw focused in-migration flows (Fig. 18,
Right), which is dramatically different from the result of the con-
ventional approach. Such differences also exist for smoothing the
net migration rates of different age groups as shown in Section 4.2.
5. Discussion and conclusion

Spatial interaction datasets with a relatively small number of
observations for most origin-destination pairs suffer greatly from
spurious data variations and as a result locational measures calcu-
lated for such datasets become unreliable. To demonstrate the use-
fulness of the approach, we smoothed the net migration rates for
all migrants and for migrants of different age groups. We also
smoothed in-flow and out-flow entropy measures (1) to show
the applicability of our method to smooth network measures;
and (2) to capture the variation in the magnitude of flows that each
location has. The method can be used to smooth a variety of loca-
tional measures such as centrality, chi-square and flow efficiency.

It is important to note that a locational measure can only repre-
sent one aspect of the spatial and/or structural characteristics of a
location in the network. More insight can be gained through ana-
lyzing the relationships between different measure results. For
example, if we compare the results of smoothed net migration rate
(Fig. 6) and smoothed in-flow entropy (Fig. 14), we could discover
overlapping clusters such as the coincidence of high entropy clus-
ters with clusters of high net migration rate in the east coast from
Virginia to Florida in addition to the coastal areas in the east of
New Orleans; and throughout most of the counties in the states
of Arizona and Florida. The overlapping of these clusters could help
reveal regions that attract migrants from diverse places (as op-
posed to places that only receive migrants from certain places).
We limit our analysis scope since the goal is to present the new
smoothing approach rather than carry out a comprehensive analy-
sis of the migration dataset.

We conducted a variance-driven sensitivity analysis to evaluate
a series of population thresholds to examine their effect on
smoothing result. The analysis showed that smoothing results
are consistent in overall patterns. A large population threshold
highlights global patterns such as at the national scale while a
smaller threshold can better reveal local patterns. For example, a
threshold of two million population shows the Southeast as a
homogeneous region of attraction, whereas a threshold of
300,000 population shows downtown Atlanta as a place of deple-
tion and its surroundings as places of attraction.

In this paper, we employed a domain-based approach and used
population or inflow/outflow to select an adaptive bandwidth. For
other types of spatial interaction data where an attribute such as
population doesn’t exist or using a population-based threshold is
inappropriate for the context of the analysis, one can employ a
data-driven approach to select a bandwidth based on the proper-
ties of the network. One potential approach is to employ a graph
partitioning method (Guo, 2009) to discover community structures
and natural regions (groups of spatially contiguous and strongly
connected units). The size of the discovered regions can provide
important information for determining the size of the neighbor-
hood (bandwidth). Our experiments with different bandwidth val-
ues showed that the smoothing results are not sensitive to small
changes in bandwidth and that results with different bandwidths
usually reveal patterns at different scales.
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