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Design and evaluation of line
symbolizations for origin–destination
flow maps
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Abstract
We present the results of a user study comparing variants of commonly used line symbolizations for directed
origin–destination flow maps. Our design and evaluation consisted of five line symbolizations that employ a
combination of following visual variables: arrowheads, origin–destination coloring (color hue, and value), line
shortening, line width, tapered edges (varying width from wide to narrow, and narrow to wide), and curvature
asymmetry and strength. To guide our evaluation, we used a task-by-type typology and chose four represen-
tative tasks that are commonly used in flow map reading: identifying dominant direction of flows, flows with
the highest magnitude (volume), spatial focusing of long flows toward a destination, and clusters of high net-
exports (net-outflow). We systematically analyzed user responses and task performance which we measured
by task completion time and accuracy. We designed a web-based flow mapping and testing framework and
recruited the participants from Amazon Mechanical Turk. To demonstrate the application and user experi-
ment, we used 16 commodity flow data sets in the United States from 2007 and systematically rotated the lay-
outs to evaluate the effect of layout orientation. From this study, we can conclude that there is potential
usefulness for all of the five symbolizations we tested; however, the influence of the design on performance
and perception depends on the type of the task. Also, we found that data and layout orientation have signifi-
cant effects on performance and perception of patterns in flow maps which we attribute to the change in
visual saliency of node and flow patterns in relation to the way users scan the map. We recommend that the
choice of line symbolization should be guided by a task taxonomy which end users are expected to perform.
We discuss various design trade-offs and recommendations and potential future work for designing and eval-
uating line symbolizations for flow mapping.
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Introduction

Both physical and intangible phenomena such as peo-

ple, commodities, and information constantly move in

the geographic space and create location-to-location

networks (graphs) that are often referred to as spatial

interactions. In a location-to-location network, each

node represents a geographic location (or area), and a

link (edge) represents an interaction between a pair of

locations. For example, domestic freight shipments

within the United States form a network of state-to-

state commodity flows in which there are 50 nodes

(states) and thousands of links (commodity imports/

exports between states).

Flow maps are commonly used to visualize spatial

interactions and facilitate the understanding of pat-

terns of spatial flows and the corresponding spatial
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context. Compared to other cartographic approaches,

flow mapping is unique, in that each data item (i.e.

flow) involves two locations and connections across

space. A flow map presents flows with straight or

curved lines connecting origin and destination loca-

tions.1–3 The nodes (origins and destinations) and

lines (flows) can vary in symbol, color, and size to rep-

resent attribute information pertaining to nodes (e.g.

population and degree) and flows (e.g. flow volume).

Although an empirical evaluation of flow mapping

has not been explicitly addressed in cartography, stud-

ies in the graph visualization community4–12 evaluated

readability and aesthetics of graph layouts and sug-

gested various principles such as minimizing edge

crossings, maintaining large crossing angles, and

obtaining symmetrical layouts. The heuristics learned

for general graph drawing can only give a very limited

guidance for flow map design. Flow maps are dramati-

cally different from general graph drawing approaches

because flow map layout is constrained by the geo-

graphic coordinates of nodes, while in non-spatial

graph drawings, nodes can be moved freely to enhance

visual clarity.

In addition to deriving heuristics for aesthetics and

edge geometry in graph drawing, alternative line sym-

bolizations (edge representations) that use arrow-

heads,13 biased curvature (Fekete, 2003),26 tapered

flow lines,14 gradual change of color hue, value and

transparency,15,16 and shortened lines17 have been

introduced and evaluated using tasks such as identify-

ing shortest paths (Huang and Huang, 2011),63 long-

est link,18 node connectivity,13 common neighbors,19

and number of edges connected to a node.20 The find-

ings of these studies are useful for flow map design but

provide limited information for answering geographic

questions, and thus, the tasks that flow maps are used

for the following:

� Where are the major flows?
� Which direction do the majority of flows go to?
� Where are the clusters of import or export?
� Where are the flows most local or dispersed?
� Where are the clusters of uneven flow where total

export is greater than total import?

The goal of this article is to evaluate the user per-

ception and performance of line symbolizations for

directed origin–destination flow maps. We design and

evaluate five symbolizations based on quadratic Bézier

curves as variants of existing techniques found to be

effective in graph drawing and cartography literature.

We use the following visual variables in our designs:

arrowheads, origin–destination coloring (color hue

and value), line shortening, line width, tapered edges

(varying width from wide to narrow and narrow to

wide), and curvature asymmetry and strength. Using a

task-by-type typology, we employ four representative

tasks that are commonly used in the literature of spa-

tial interaction analysis: identifying dominant direction

of flows, flows with the highest magnitude (volume),

spatial focusing of long flows toward a destination,

and clusters of high net-exports (net-outflow). We sys-

tematically analyzed user responses and task perfor-

mance which we measured by task completion time

and accuracy. We designed a web-based flow mapping

and testing framework and recruited participants from

Amazon Mechanical Turk (AMT) which is an online

crowdsourcing platform. To demonstrate the applica-

tion and user experiment, we used 16 commodity flow

data sets in the United States from 2007. We systema-

tically rotated the layouts to evaluate the effect of lay-

out orientation and account for learning effects.

We organized the remainder of the article as follows.

First, we describe the related work on the design and

evaluation of line symbolizations in flow mapping and

graph visualization. We then introduce our task taxon-

omy and flow line symbolizations. Next, we introduce

the details of our experiment including our hypoth-

eses, experiment design, tasks, data, procedure, and

participants. We then report the results of our evalua-

tion and discuss our recommendations and limitations.

Finally, we conclude by a summary of our evaluation

and future work.

Related work

In this section, we provide a review of the studies on

the design and evaluation of alternative flow line sym-

bolizations and discuss the trade-offs when choosing

visual variables for depicting direction, magnitude,

length, and clustering. Our study and review focus on

static line symbolizations; however, one can find a

thorough discussion of animated representations in

Ware and Bobrow21 and Holten et al.13

Slocum et al.22 identify five kinds of flow maps: dis-

tributive, network, radial, continuous, and telecom-

munications flow maps. Tobler’s3 origin–destination

flow maps of state-to-state migration are examples of

network flow maps that include abstract links between

origins and destinations. Depicting one-way flows with

a measure such as net flow or total flow is commonly

used to create flow maps. In this article, we focus on

directed two-way origin–destination flow maps with

abstract connections.

Directed two-way flow lines between a pair of loca-

tions are often drawn by clockwise (i.e. left-hand traffic

rule)23 and counter-clockwise (i.e. right-hand traffic

rule)3 line orientation. The right-hand traffic rule

draws a flow line on the right side, and the left-hand
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traffic rule draws on the left side of an imaginary

straight line from an origin to a destination. Both

straight and curved lines have been commonly used to

depict two-way directions among a pair of locations.1–3

Tobler3 generated one of the first origin–destination

flow maps, in which each flow is depicted as a straight

line with an arrowhead at the destination end to indi-

cate direction. Ware et al.24 suggested that some form

of asymmetry is needed to encode direction along the

edge of a line. Arrowheads provide asymmetry by pro-

voking stronger response at the head than the tail, but

they are found to perform poorly on directional tasks

in graph reading.14,24

Quadratic Bézier curves provide curvature asymme-

try (bias) by depicting lines as curvy at the origin and

straight at the destination end.25,26. Purchase et al.19

discuss that curved lines would lead to improved inter-

pretation of the connections since curvature produces

wider angles between edges and the connections

become more visible.19 In contrast, Ware27 argues that

visual processing of line curvature is weaker than fac-

tors such as color, orientation, and size. Holten et al.14

and Netzel et al.18 evaluated several design alternatives

to visualize edges in node–link diagrams and found

that tapered edges outperform curvature-based repre-

sentations. Tapered edges employ varying line width

from narrow to wide or from wide to narrow to indi-

cate direction along a flow line. Xu et al.20 studied the

impact of edge curvature on graph readability and

found that uniform (symmetrical) edge curvature had

a detrimental impact on graph readability as increased

curvature results in more visual clutter, and this nega-

tive effect increased with curvature level. Xu et al.20

also found that users prefer straight over curved lines

despite the contrasting findings by Bar and Neta.28

Alongside with tapered edges and asymmetrical

curved lines, gradual change of color value (i.e. from

dark to light or light to dark) and color hue (i.e.

between two divergent colors such as red and blue)

along the length of a flow line have been commonly

used as a redundant variable to indicate directional-

ity.15,16 However, little is known on users’ performance

and perception of direction using color value and hue

as a visual variable along the length of a flow line.

Line width is commonly used to depict magnitude

on flow maps and weighted node–link diagrams. In

addition to line width, color value, hue, and transpar-

ency have commonly been adopted as redundant vari-

ables to represent magnitude of flows. Gill29

demonstrated that the most significant contribution to

the prominence or visual weight of line symbols is

made by line weight (or width); however, both line

width and color value have effectively been used

together to express flow magnitude.

In addition to direction and magnitude, flow length

has been symbolized by visual variables, especially

color hue and value. To aid the perception of edge

lengths for performing length-related tasks, Holten

et al.14 used color hue to classify the edges by length.

Holten et al.’s14 evaluation concluded that users have

increased difficulty in determining edge lengths when

edges are longer, and the effect is amplified when the

graph is denser. Alternatively, depth sorting, which

sorts lines by their length so that longer lines are dis-

played on top, has been found effective in identifying

the longest edges.18

In order to enhance the perception of clusters in

graphs, a variety of node–link group diagrams have been

introduced. Node–link group diagrams employ a variety

of techniques such as node coloring,30,31 map-like areal

representations,32 isocontours,33 and connecting set of

lines34 to display group or cluster information overlaid

on node–link diagrams.

A flow map can easily become cluttered when it

depicts a large number of flows. To overcome this

problem, interaction operators, such as linking,35

brushing,36,37 filtering and zooming,38 and computa-

tional methods, such as edge bundling, edge ordering,

minimizing overlap with arrows, adjusting vertex

positioning to optimize angular resolution and edge

crossings,39–41 graph partitioning and regionaliza-

tion,25 and flow smoothing and clustering,42 have

been successfully employed. Computational methods

are often necessary to first reduce visual cluttering

and then generate visually enhanced flow maps with

decreased number of flows and regions (or nodes).

In our experiment, data sets we use do not require

further simplification as they do not have a severe

cluttering problem. However, our findings can also

provide design guidelines for the data reduction and

flow map generalization techniques to reduce

cluttering.

Aside from the interaction techniques and compu-

tational methods, alternative edge representations have

been used to reduce visual cluttering. Becker et al.43

used half-lines from an origin to a destination with a

straight line in which only the first half of the line is

drawn. This strategy reduces visual cluttering by

reducing the number of edge crossings. However, it

becomes difficult to distinguish origin–destination

pairs. Borrowing from the Gestalt principle of closure,

Rusu et al.44 employed line shortening to reduce clut-

tering by drawing only the start and end segments of

flow lines. Burch et al.17 further evaluated user perfor-

mance and responses of the line shortening method

and found that shortened lines help decrease response

times; however, they increase error rates because of

directional ambiguity.
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Task selection

Flow map reading involves visual judgment and cogni-

tion of the properties of flows such as magnitude,

orientation, direction, and distribution of connec-

tions.27 Given the large number of possible flow map

reading tasks, it is challenging to select tasks for the

evaluation of flow maps. Andrienko et al.45 introduced

a task taxonomy for the analysis of temporal–spatial

interaction data based on the search level (the number

of map elements under consideration). While elemen-

tary tasks such as lookup, comparison, and relation

seeking refer to searching for a characteristic of only

one feature such as a flow or a node, synoptic tasks

focus on several-to-all map features. Synoptic tasks

refer to Bertin’s46 intermediate and overall levels and

allow the exploration of geographic and holistic pat-

terns which is the main focus of our analysis of tasks.

In order to guide the selection of appropriate visual

tasks, we employ a task-by-type taxonomy47,48 which

includes two dimensions which visual tasks vary. (1)

Bertin’s46 three levels for map reading: individual,

group (intermediate), and network (overall). The indi-

vidual level refers to an elementary task to search for

the characteristics of a single element (e.g. a flow or a

node). While group level describes search tasks for a

group of elements (e.g. a group of flows), and the net-

work level describes search tasks that include all of the

elements. (2) The second dimension of the taxonomy

is type-centric operands that categorize spatial interac-

tion data (i.e. flows, origins, and destinations) by the

characteristics of flows and nodes. Our task-by-type

taxonomy (Table 1) consists of four visual tasks. The

first two tasks require a search task on a single attri-

bute (direction, or magnitude) and commonly used in

throughout the literature in spatial interaction analysis.

On the other hand, Task 3 and Task 4 require a search

task using a combination of two attributes. We provide

the use cases of the four tasks below:

Task 1 (dominant flow direction). The first task is to

compare the direction of all flows and select the most

common direction summarizing all flows.

Task 2 (flows with the highest magnitude). The second

task requires participants to compare the magnitude

of all flows and identify the top 3 flows with the high-

est magnitude.

Task 3 (spatial focusing of long flows toward a destina-

tion): The third task requires participants to compare

and identify the top 10 flows in length, compare their

directions, and identify the location that receives the

largest number of these flows. The emphasis of this

task is the convergence of long flows toward a destina-

tion and typically analyzed in migration research for

identifying channelized or spatially focused flows.49,50

Task 4 (cluster of net-exporters). The fourth task requires

participants to compare the similarity of nodes in

terms of their net-flows represented by color (blue)

and identify the nodes with the high-net-outflows that

are near one another based on their spatial proximity.

Therefore, participants do not need to compare flows

to complete the fourth task. The emphasis of this task

is to identify a spatial cluster of net-exporters (or loca-

tions) with uneven flows where export is greater than

import.51 McGrath et al.52 found that both the struc-

tural pattern of edges and the spatial arrangement of

nodes affect users’ perception of groups in graphs. As

different line symbolizations could impact the percep-

tion of the pattern of edges between nodes, our pur-

pose is to assess the influence of alternative line

symbolizations on the perception of node clusters.

Table 1. Flow map tasks.

Task Element Search level Dist. Dir. Mag. Clust.

T1: Select the dominant direction
that most flows are going to

Flow Network X

T2: Select three flows that have the
highest volume

Flow Group X

T3: Select the circle that receives
the highest number of flows in the
top 10 in length

Node, flow Individual, group X X

T4: Blue circles illustrate net-
exporters which have greater total
volume of exports than imports.
Select a cluster of blue circles that
are near one another

Node Group X X

Dist.: distance; Dir.: direction; Mag.: magnitude; Clust.: clustering.
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Flow line symbolization

In this section, we introduce our five design alterna-

tives compared in our user study (Table 2). Our first

design is Monotone Arrowhead (MA) with high curva-

ture at the start and low curvature at the end (Fekete,

2003)26 and a partial arrowhead to reduce the clutter-

ing caused by the full arrow. Edge representations with

arrowheads have been found to hinder observation of

flow direction as a result of increased visual cluttering

and lead to poor performance in unweighted and

directed node–link diagrams.14

Our second and the third designs use the same

Bézier curve with partial arrowhead and a variation of

gradual change of color hue and transparency15,16 to

indicate directionality. The second design is Divergent

Arrowhead (DA) which depicts the flows with a gra-

dual change of color hue from origin to destination

using a divergent color scheme (blue at the origin,

light gray at the middle break, and red at the destina-

tion end).

The third design is Fading Arrowhead (FA), which

depicts the flows only at their start and ending points

with the same divergent color scheme used by DA;

however, FA employs line-shortening43 by setting the

middle of the flow line as transparent. The length of

the transparency is set in proportion to the length of

the flow, and line shortening is only applied to flow

lines that are larger than 200 pixels. As a result of

selective shortening by distance, flow lines drawn by

FA and DA differ significantly for long-distance flows,

whereas they tend to be similar or the same for shorter

flows.

The fourth design is Tapered (TA) flow line, which

is an altered version of Holten et al.’s14 tapered edge

design which performed the best among many other

edge representations for directed and unweighted

node–link diagrams. Different from the original

tapered design, we employed counter-clockwise biased

curvature (from high to low curvature toward the des-

tination) to be able to depict bi-directional flows and

proportional line width and color value to depict mag-

nitude. While its curvature is identical to that of MA,

DA, and FA, TA’s line width is variable and gradually

decreases to become non-existent where it touches the

destination end.

We adopted Teardrop (TD) as the fifth design from

Ware et al.24 which demonstrated the effectiveness of the

TD design for depicting the direction of a vector field

such as wind direction and ocean current. In contrast to

the tapered edge used by Holten et al.,14 Ware et al.’s24

TD employs a biased curvature from low to high curva-

ture toward the destination; varying width and an addi-

tional visual variable of color value along the length of an

edge from narrow to wide to depict directionality. As

compared to other designs which employ the same cur-

vature, TD has a reduced curvature to ease the percep-

tion of direction toward the destination end.

There are two alternatives for node symbolization

in origin–destination flow maps: flow lines start and

end inside an area or at point symbols. We use point

symbols as the start and end point of flows and employ

proportional circles to illustrate total flow or net flow

depending on the visual task. For tasks that do not

require assessing net flow per location, we use total

flow (in and out) to determine the size of the point

Table 2. Flow line symbolizations used in the evaluation.

Design Name Direction Magnitude

Monotone Arrowhead (MA) Biased curvature, arrowhead, counter-
clockwise orientation (right-hand traffic
rule)

Line width, color value

Divergent Arrowhead (DA) Biased curvature, arrowhead, counter-
clockwise orientation, varying thickness,
gradual change of color hue from blue, to
gray mid-break, to red

Line width

Fading Arrowhead (FA) Biased curvature, arrowhead, counter-
clockwise orientation, gradual change of
color hue and transparency from blue to,
transparent white mid-break, to red

Line width

Tapered (TA) Biased curvature, counter-clockwise
orientation, varying line width from wide to
narrow

Line width, color value

Teardrop (TD) Biased curvature, counter-clockwise
orientation, varying line width from narrow
to wide, gradual change of color value

Line width, color value
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symbol which improves the design of the layout as it

provides a larger area (circle) for connecting to loca-

tions with a large number of flows. For the clustering

task, we employed divergent node coloring to distin-

guish net-exporters and net-importers and used size

proportional to the net flow.

Experiment

This section describes our research questions, hypoth-

eses, tasks, data sets, procedure, and further details of

our user study. We first introduce our general research

questions and specific hypotheses based on previous

research in cartography and graph visualization and

our own experience obtained from working with flow

mapping and user testing.53

Hypotheses

In this section, we introduce our research questions

and specific hypotheses:

H1. Which flow line symbolization(s) facilitate(s) a

consistent performance and perception of patterns

across different types of task, data, and layout settings?

Overall, we expect MA to be the most successful

design overall because of its simplicity and fewer

design trade-offs.

H2. How do flow data influence task performance and

pattern perception? Are there any differences in per-

formance across different data sets? In light of our pre-

vious work,53 we hypothesize that data would have a

strong effect on task performance and pattern percep-

tion in flow maps, which can often be stronger than

the design decisions.

H3. Does the layout orientation affect viewing strate-

gies and thus the performance of designs? We expect

that rotation of a layout will result in differences in

performance and perception by changing the position

of nodes, and flows, and thus, altering the saliency of

patterns.

H4. Following the top-down perspective, we argue

that arrowhead is a symbol in culture that indicates

direction, and therefore, may be perceived easier than

other visual variables that encode direction.

Therefore, we hypothesize that designs with arrow-

head (MA) will outperform the tapered design with-

out arrows (TA) for identifying dominant direction

(Task 1) and spatial focusing of long flows toward a

destination (Task 3).

H5. We hypothesize that the use of the divergent color

scheme as an additional visual variable to encode

direction between origins and destinations, FA and

DA will produce higher correctness and lower

response time for the dominant direction task.

H6. Using varying thickness from narrow to wide

(instead of wide to narrow) with less curvature and a

gradual change of brightness, TD will outperform TA

on perceiving dominant direction.

H7. MA and TA will outperform other designs in per-

ceiving magnitude as they both use redundant visual

variables of line width and color value, which has been

found to be effective in perceiving magnitudes.29 DA

and FA will increase the difficulty in reading magni-

tude information because of using a divergent color

scheme. FA will produce increased difficulty as a result

of line shortening, and TD will likely produce

decreased correctness because of its double use of color

value for depicting both direction and magnitude.

H8. As previous work suggests, tapered flow line sym-

bolizations (TA and TD) have been found to be inef-

fective for long flows.18 However, we expect TD to

perform well and outperform TA on Task 3 because

TD’s design emphasizes the destination end of flows

which Task 3 is looking for. Also, we expect FA to be

ineffective for perceiving patterns that involve long

flows (Task 3) as line shortening results in directional

ambiguity especially in displaying long flows.17

H9. As the structural pattern of edges affect users’

perception of groups in graphs,52 we hypothesize that

participants’ perception of clusters will be affected by

line symbolization. We hypothesize that designs that

emphasize the origin of flows will make net-exporters

easier to detect. Specifically, we expect the design FA

and DA to outperform other designs as the origin of

the flow lines are symbolized with blue hue, which

increase the emphasis on the point symbol for distin-

guishing net-exporters.

Experiment design

We used a mixed design with one between-subjects

variable: line symbolization (five levels) and two

within-subjects variables: data (four levels) and 180�
rotation (two levels). The test included 27 questions,

in which only 16 questions require participants to

complete tasks using flow maps, while the rest are

background and a final feedback question for the test

and given flow maps.

We evaluated the complexity of the type of tasks

based on the number of attributes (i.e. direction, mag-

nitude, distance, and clustering) that participants are

required to assess and user interactions needed to

complete the task. We then ordered the task from sim-

ple to more complex. We kept the first two types of

tasks (i.e. direction and magnitude) in a fixed order.

We selected the direction task to be the first in order

because of its simplicity: users are asked to evaluate

the direction of all flows and select a choice among

four alternatives (e.g. south, north, west, and east).
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We selected magnitude to be the second task, as it

requires users not only to evaluate the magnitude of

all flows but also to interact with the map to select

(identify) the top 3 flows with the highest magnitude.

The complexity of the task increases for the last two

tasks as users are asked to evaluate a combination of

characteristics (flow distance and direction, node type,

and distance and clustering) and interact with the

map. Because there is no distinct difference between

the complexities of the last two types of tasks, we ran-

domized their order of appearance (Tasks 3 and 4).

Participants were given four distinct data sets for

the four types of tasks, and we specifically kept the

questions of the same task together in order to alleviate

the confusion that may result from switching back and

forth between the different task types. Random order-

ing for the two tasks and four data sets per task with

180� rotation was applied to all five designs to generate

480 (5 design 3 4! data set 3 2 rotation 3 2 task)

unique combinations which we randomly assigned to

participants.

Tasks

We chose our tasks by a task-by-type taxonomy

(Table 1) as follows:

� Task 1. Select the dominant direction that most

flows are going to.
� Task 2. Select three flows that have the highest

volume.
� Task 3. Select the circle that receives the highest

number of flows in the top 10 in length.
� Task 4. Blue circles illustrate net-exporters which

have greater total volume of exports than imports.

Select a cluster of blue circles that are near one

another.

To reduce the cognitive load induced by instruc-

tional materials, we kept the instructions as short as

possible. Wording in task questions greatly influence

the quality of response. In order to reduce the com-

plexity of tasks, especially for the non-expert online

users, we presented abstract tasks to the participants

and avoided domain-specific words such as ‘‘node,’’

‘‘edge,’’ and ‘‘location.’’ We directed users’ attention to

the visual variables using abstract phrasing such as

‘‘Select the circle’’ instead of using the true verbal

description of phenomenon that those visual variables

present (e.g. ‘‘Select the state or location’’).

Flow data

As a result of being constrained by geographic coordi-

nates of nodes, flow map layout suffers from the visual

complexity induced by the number of flows, flow

lengths, and crossings. However, geographies of flows

have particular characteristics, and such characteristics

are crucial for understanding holistic and geographic

patterns in flow maps. To account for the characteris-

tics of geographic flows and any bias that would be

introduced by a particular layout, we designed the

experiment with 16 real-world data sets on commodity

flows in the United States which is collected and gen-

erated by the Commodity Flow Survey (CFS) in

2007. Each data set exhibits a particular set of pat-

terns such as a dominant direction of flows, high-

magnitude flows with varying length and position,

convergence of long flows toward a destination, and

clustering of net-exporters. Each data set was assigned

to a task and used only once. We did not control any

properties such as number of nodes, edges, and edge

crossings. Our purpose was to observe whether data

would have a significant effect on task performance

and pattern perception in flow maps using four differ-

ent data sets for each task.

Layout orientation (rotation)

We hypothesize that visual saliency of flows potentially

impact the perception of node characteristics (promi-

nence), and visual saliency is greatly influenced by the

position of the flows and nodes, and orientation of the

layout. In order to understand the relationship

between the particular layout orientation and typical

display viewing strategies, one can use layout rotation

or creating a mirror image of the flow map. We

employed a 180� rotation to consecutive flow maps so

that the participants are given a 180� rotated layout

for every other flow map in the test. In addition to

evaluating the effect of layout orientation on viewing,

rotation help take into account the learning effect on

the position of nodes.

Procedure

The test is made available to the public using the fol-

lowing link: http://tinyurl.com/flowmaptest. Participants

are first prompted with an instruction window that

briefly describes interactive flow mapping and the

online system that would be used by the participant.

The test included 27 questions, in which only 16 ques-

tions require participants to complete tasks using flow

maps, while the rest are background questions and a

final open-ended question to receive feedback on the

test and given flow maps.

There was no time limit to answer any of the ques-

tions; however, the participants were encouraged to

spend 30–45 s to complete each task. The whole ses-

sion took about 12 min on average. The test interface

Koylu and Guo 315



detects screen resolution and the browser window’s

size to adjust the size of the map. If the height of the

browser window is narrower than 768 pixels, the par-

ticipant is not eligible to take the test. Zooming and

panning were disabled in the test interface; however,

users could still interact with the flow map to select

(click on) nodes and flows to complete the tasks. The

first task of each task type was given as a practice, and

the expected answer after the practice was highlighted.

We did not include the practice task in evaluating the

results. We allowed participants to participate in the

study only once.

Participants

Increasing number of studies has proven the usefulness

of online crowdsourcing services for conducting usabil-

ity experiments.54–56 Following this trend, we used

AMT crowdsourcing service (https://www.mturk.com)

to recruit participants. We paid each participant

50 cents to conduct the test that took 12 min on aver-

age. To ensure motivation (1) we required the partici-

pants to have greater than 1000 approved hits with a

90% hit approval rate and (2) we paid a bonus of

5 cents for each correct answer which added up to a

total of 60 cents as bonus.

A total of 551 subjects participated in the test. We

used a threshold of 2 s of average response time in

order to eliminate ‘‘the spammers,’’ participants who

quickly respond without thoughtfully considering the

prompt.57 There were 37 participants whose average

response time was below 2 s. We also excluded six par-

ticipants who self-reported to have impaired vision or

English level as ‘‘Do not know English.’’ We recorded

maximum time for unchanged cursor position to iden-

tify the participants who were idle during the test. We

omitted 11 responses which were idle between approx-

imately 3 and 60 min. We omitted a total of 54 partici-

pant responses which corresponded to approximately

10% of all responses.

We analyzed the responses of 496 participants

(59% male, 41% female) after elimination. The ages

of the participants were between 18 and 68 years, and

median age was 33 years. The majority of the partici-

pants declared to have a college (41%) and graduate

degree (39%), whereas there were participants with a

high school degree (19%) and a degree with less than

high school (1%). Most participants were from the

United States (67%) and India (27%), and the rest

6% were from 18 different countries. A total of 47%

of the participants stated that they had never seen a

flow map before. After seeing a flow map, 91% of the

participants stated (i.e. agree and strongly agree) that

they understand what a flow map represents. The

majority (95%) of the participants use computers

more than 3 h a day. Most of the participants (94%)

use maps regularly (e.g. Google Maps) and feel com-

fortable about using online mapping services. To

account for the performance variation due to screen

size, we recorded screen resolution and used it as a

factor in our statistical analysis of the results. Screen

resolutions varied from 1024 3 768 to 2560 3 1440.

While 48% of the participants had 1366 3 768 and

28% of the participants had screen height equal or

greater than 1024. In order to account for its effect on

performances, we included screen resolution as a cate-

gorical variable derived from screen height (small

screen: \ 1024, large screen: 51024). A total of 72%

of participants had smaller screen height ( \ 1024),

whereas 28% had larger (51024).

Results

We provide an application to view participants’

responses: http://tinyurl.com/flowmaptestresponses.

We use the following abbreviations for four unique

data sets in each task: D1, D2, D3, and D4 and two

rotations: U for Un-rotated and R for Rotated 180�.

Task 1

To complete the first task, participants selected one of

the four choices that summarizes the direction of most

flows in a given flow map. We illustrate the usability

metrics by design, data set, and rotation: percentage of

correct responses in Figure 1(a) and response time dis-

tributions using bean plots in Figure 1(b). We con-

verted each participant’s answer to a correctness score

of 1 and 0. We selected design MA, no rotation, and

data set D1 as the reference group for performing a

series of logistic regressions on correctness score with

independent variables: design, data set, rotation, and

screen resolution. To meet the assumptions on the

normality and homogeneity of residuals, we log trans-

formed the response times and performed an analysis

of variance (ANOVA) using the same independent

variables. Screen size was found to have no significant

effect on percent correctness; however, unsurprisingly,

smaller screen resolution (height: \ 1024) produced

higher response time (p \ .001).

Dropping screen resolution from the models, we

performed logistic regression on correctness and

ANOVA on log response time using design, data set,

and rotation as independent variables (Table 3). As

none of the interactions were significant, we ran the

models without the interaction terms. All main effects

were significant which highlight the significant differ-

ences among the levels of design, data set, and rotation

(Table 3). MA outperformed all other designs. Data

sets D2 and D4 resulted in higher accuracy than D1
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and D3. Although the effect of rotation depended on

the orientation of the data set, rotation led to higher

accuracy.

Similar to the analysis of correctness, the results of

ANOVA on log response time did not produce any sig-

nificant interaction effect; however, all three main

effects were found to be significant (Table 3). Post-hoc

pairwise comparisons showed that FA produced higher

average log response time than MA; FA and DA pro-

duced higher response times than TD. Great variation

in response times between FA–TD and DA–TD could

clearly be observed from the bean plots (Figure 1(b)).

TD produced relatively more compact distributions

than DA and FA, which indicates less variation among

users. D1 resulted in higher average response time

than other data sets: D2, D3, and D4. In addition,

rotation resulted in a significant decrease in time to

respond. Logistic regression on accuracy with response

time as an independent variable revealed a significant

negative correlation (p \ .001) between response

time and accuracy which could also be observed by

comparing Figure 1(a)–(b).

Figure 1. Usability metrics for Task 1 by data set, design, and rotation: (a) percent correctness and (b) distributions of
response time (in seconds). Increased response time is often a result of stretched distributions and correlates with
lower accuracy.

Table 3. Significant results on correctness and response time for Task 1.

Logistic regression on correctness (Reference group: MA, D1, U) ANOVA on log response time

Coefficients Z p Coefficients F p

DA 22.540 .011 Design (MA, DA, FA, TA, TD) 5.784 \.001
FA 22.964 .003 Data set (D1, D2, D3, D4) 8.388 \.001
TA 25.144 \.001 Rotation (U, R) 11.944 \.001

TD 25.244 \.001 Tukey’s HSD on log response time
D2 4.635 \.001
D4 3.461 \.001 Pairs Diff. p

R 1.694 .090 FA–MA .1680 .008
MA: DA: FA:

TA: TD:
U: Un-rotated; R: Rotated

FA–TD .2254 \.001
DA–TD .1510 .026
D1–D2 .2211 \.001
D1–D3 .1258 .029
D1–D4 .1608 .002
U–R .1113 \.001

MA: Monotone Arrowhead; DA: Divergent Arrowhead; FA: Fading Arrowhead; TA: Tapered; TD: Teardrop; ANOVA: analysis of variance.
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To illustrate the observed significant differences,

Figure 2 depicts the flow maps created using the fol-

lowing: (1) FA on un-rotated D2, (2) MA on rotated

D2, (3) FA on un-rotated D3, and (4) FA on rotated

D3. Participants were quicker and more accurate in

picking the most common direction for flows when

D2 was rotated (Figure 2(b)). Rotation resulted in

23% increase in correctness and 4-s decrease in aver-

age response time for FA on D3 (Figure 2(c) and (d)).

Significant effects of data set on correctness and

response time support our hypothesis H2 that data

have a strong effect on the performance of users. This

is not surprising as the responses are most likely to be

influenced by the availability of alternative answers,

the visual complexity, and layout configuration of each

flow map. For example, while the most dominant

direction of flows in D3 is west-to-east, there are also

a large number of flows from east-to-west which some

participants likely to choose as the answer

(Figure 2(c)). On the other hand, the alternative

answer in D2, south-east to north-west, has much less

number of flows than the correct choice north-west to

south-east (Figure 2(a)). Visual complexity also influ-

ences user responses and is determined by various

properties of data sets such as number of nodes, edges,

edge crossings, clustering of nodes and flows, and dif-

ferences in magnitude, direction, and length among

flows.

Significant effect of rotation on correctness and

response time support our hypothesis H3 that rotation

(or layout orientation) has an impact on user

perception and responses. Although our findings could

still happen by chance, we argue that higher accuracy

on rotation may be a result of re-positioning of flows

relative to the direction the participants scan the map

from top-left.58 When the destination ends of flows,

which users attention is focused when looking for

directions, are positioned closer to top-left, partici-

pants were more accurate and faster (i.e. compare

Figure 2(a) and (b) and Figure 2(c) and (d)).

MA outperformed all other designs. In order to

evaluate whether designs with arrowheads produce

higher accuracy, we ran logistic regressions using DA

and FA as reference level. Both DA and FA were found

to produce significantly higher accuracy than TA and

TD. These findings support our hypothesis H4 that

arrowheads produce higher accuracy on identifying

dominant direction. On the other hand, DA and FA

produced higher average response time than MA, and

TD and lower correctness than MA which contradicts

our hypothesis H5 that divergent color scheme would

result in higher accuracy and lower response times. We

attribute this finding to increased cognitive load caused

by divided attention among multiple visual variables

(e.g. divergent color hues and arrowhead) to represent

direction.59 We expected TD to outperform TA (H6);

however, we did not find any significant differences in

correctness among the two designs. However, TD

resulted in decreased average response time than FA

and DA, which could be attributed to its additional

visual variable of varying color value for depicting

direction.

Figure 2. Example flow maps used in Task 1: (a) FA on un-rotated D2 (correctness (C): 87%, avg. resp. time (T): 10.9 s);
(b) MA on rotated D2 (C: 100%, T: 7.4); (c) FA on un-rotated D3 (C: 69%, T: 13.1); and (d) FA on rotated D3 (C: 92%, T: 9.5).
Rotation on D2 and D3 resulted in significant differences in correctness and in response times and affected FA the most.
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Task 2

To complete the second task, participants were

instructed to compare the volume of the flows and

select three flows which appeared to have the highest

volume. For each flow map (i.e. a combination of

design, data set, and rotation), we calculated a percent

correctness score by dividing the number of times the

top 3 flows are selected by the total number of selec-

tions (3 3 # participants). ANOVA on percent cor-

rectness revealed significant main effects of design,

data set, and rotation and a two-way significant inter-

action effect on data set and rotation (Table 4). Screen

size was found to have no significant effect on correct-

ness and excluded from the model. Figure 3 illustrates

(1) percent correctness and (2) distributions of

response time by data set, design, and rotation.

Pairwise comparisons revealed 11 significant

rotation–data set interactions (Table 4). Among these

pairs, D1:R–D1:U compares the rotated and un-

rotated versions of D1 and highlighted a significant

increase in correctness when D1 was rotated (Figure

3(a) and (b)). On the other hand, comparisons

between the levels of design revealed that MA and TA

outperformed all other designs, which confirms our

hypothesis H7 on magnitude. We also found signifi-

cant differences among the data sets which support

our hypothesis H2 that flow data impact perfor-

mances. D4 resulted in lower correctness than other

data sets, and D3 was found to produce higher cor-

rectness than D1. Rotation also produced higher

correctness which supports our hypothesis H3 that

layout orientation impacts performance.

On the other hand, FA and DA showed relatively

more stretched distributions that highlight greater var-

iation of response time among participants

(Figure 3(b)). The results of ANOVA on log response

time revealed significant main effects of design, data

set, and rotation and the interaction between design

and data set. Screen resolution was not found to have

a significant effect on correctness or response time.

Pairwise comparisons between the levels of design and

data set using Tukey’s honest significant difference

(HSD) showed that FA led to higher log response time

than all other designs. DA resulted in higher average

log response time than MA, TA, and TD.

In order to discuss possible reasons behind the per-

formance variation, we compare four flow maps: MA

on rotated D1 (Figure 4(a)) with FA on un-rotated D1

(Figure 4(b)) and MA on rotated D3 (Figure 4(c)) with

FA on un-rotated D3 (Figure 4(d)). Due to its use of

only line width to depict magnitude and origin–

destination coloring acting as distractors, FA’s lower

performance can be observed in both data sets D1 and

D3. Findings of eye movements on various media

sources commonly agree that most users start scanning

an image from top-left region which attracts the most

and earliest attention.58,60 Rotation alters the relative

position of the flow lines and thus the salient areas in a

flow map. As a result, visually salient flows that are

placed along the direction of users’ gazing behavior

(from top-left) possibly stay in their short-term memory,

Figure 3. Usability metrics for Task 2 by data set, design, and rotation: (a) percent correctness and (b) distributions of
response time (in seconds). FA, DA, and TD resulted in lower accuracy and higher response times which was largely due
to increased performance variation between participants.
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Table 4. Significant results on correctness and response time for Task 2.

ANOVA on percent correctness ANOVA on log response time

Coefficients F p Coefficients F p

Design (MA, DA, FA, TA, TD) 16.991 \.001 Design 34.389 \.001
Data set (D1, D2, D3, D4) 11.930 \.001 Data set 13.049 \.001
Rotation (U, R) 33.469 \.001 Rotation 12.362 \.001
Rotation 3 data set 6.093 .003 Design 3 data set 1.669 .06

Tukey’s HSD on percent correctness Tukey’s HSD on log response time

Pairs Diff. p Interaction
pairs

Diff. p Pairs Diff. p Interaction
pairs

Diff. p

MA–DA .1082 \.001 D1:R–D4:R .1047 .006 DA–MA .2550 \.001 FA:D4–TD:D4 .3772 .005
TA–DA .0703 .012 D1:R–D1:U .1614 \.001 DA–TA .2390 \.001 FA:D3–MA:D3 .4263 \.001
MA–FA .1214 \.001 D1:R–D4:U .1511 \.001 DA–TD .2182 \.001 FA:D3–TA:D3 .4937 \.001
TA–FA .0835 .002 D2:R–D1:U .1279 \.001 FA–DA .1675 .002 FA:D3–TD:D3 .3271 .04
MA–TD .1350 \.001 D2:R–D4:U .1176 .002 FA–MA .4225 \.001 FA:D2–MA:D2 .5585 \.001
TA–TD .0972 \.001 D3:R–D4:R .1085 .004 FA–TA .4065 \.001 FA:D2–TA:D2 .4414 \.001
D1–D4 .0472 .062 D3:R–D1:U .1652 \.001 FA–TD .3857 \.001 FA:D2–TD:D2 .4447 \.001
D2–D4 .0865 \.001 D3:R–D4:U .1549 \.001 D2–D1 .1945 \.001 FA:D2–DA:D2 .4438 \.001
D3–D4 .0965 \.001 D2:U–D1:U .1122 .003 D3–D2 .2321 \.001 FA:D1–MA:D1 .4223 \.001
D3–D1 .0493 .048 D3:U–D1:U .0947 .017 D2–D4 .1756 \.001 FA:D1–TD:D1 .5310 \.001
R–U .0735 \.001 D2:U–D4:U .1018 .008 U–R .1003 \.001 FA:D1–TD:D1 .3881 .003

MA: DA: FA: TA: TD:
U: Un-rotated; R: Rotated

MA: Monotone Arrowhead; DA: Divergent Arrowhead; FA: Fading Arrowhead; TA: Tapered; TD: Teardrop; ANOVA: analysis of variance;
HSD: honest significant difference.

Figure 4. Example flow maps used in Task 2: (a) FA on rotated D1, (b) MA on un-rotated D1, (c) FA on un-rotated D3, and
(d) MA on rotated D3. The percentage of participants that selected the top 5 flows are shown for each map, and the
percentage values for the 180� rotated version of each map is given in parenthesis.
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as they compare the magnitude of all flows in the map.

We observe the effect of rotation in flow maps shown in

Figure 4. For example, the top 3 flows were at the bot-

tom of the layout in un-rotated D1 (Figure 4(a)), and

the percentage of participants that selected the top 3

flows was 68%, 74%, and 89%. When D1 was rotated,

the top 3 flows were placed at the top of the layout, and

the percentages increased to 89%, 88%, and 89%. We

provide a further discussion on the influence of gazing

behavior, saliency of flows, and task-dependent factors

in the ‘‘Discussion’’ section.

Overall, the results confirm our hypothesis H7 on

the success of MA and TA as a result of their use of

color value as an additional visual variable to depict

the volume of a flow. We attribute lower percent cor-

rectness for FA and DA to their use of only line width

for depicting magnitude and the use of gradual change

of color hue and transparency (i.e. for FA) for depict-

ing directionality which act as distractors when asses-

sing the magnitude of flows. On the other hand, we

attribute TD’s lower percent correctness to its double

use of color value to encode magnitude and direction

between origin and destination.

Task 3

For the third task, participants were asked to select a

location (circle) that received the highest number of

flows that are top 10 in length. Figure 5 illustrates (1)

the most common participant responses with their

percentages and (2) distribution of response times. We

converted each response to an accuracy score of 1 and

0 and ran a series of logistic regressions on accuracy

with independent variables design, data set, and rota-

tion and reference levels: MA, no rotation, and D1

(Table 5). Significant interaction effects exist between

rotation and data set and design and data set. Pairwise

comparisons revealed that the odds of correctly per-

forming the task increased when TA and TD were

used on D3 and TD was used on D4, whereas the

odds for correct response were decreased when D3

and D4 were rotated (Table 5). Besides the interaction

effects, the main effects of data set and design were

found to be significant, while rotation was not.

Overall, TA performed significantly worse than MA,

whereas there were no significant differences between

MA and other designs. The results of logistic regres-

sions using TD, FA, and DA as the reference level also

showed that each of the designs significantly increased

the odds of correct response as compared to TA

(p \ .001). We attribute TD’s increased correctness

to its emphasis on the destination end of flows which

Task 3 is asking. We also expected FA to be ineffective

for perceiving patterns that involve long flows as line

shortening results in directional ambiguity especially

in displaying long flows. However, the results did not

show significant differences between FA and other

designs: MA, TD, and DA. On the other hand, the

odds of accurately performing the task increased on

D2 and D4 regardless of design and rotation.

ANOVA on log response times revealed none of the

interaction effects as significant, whereas main effects

Figure 5. Usability metrics for Task 3: (a) responses and percent correctness and (b) distributions of response time (in
seconds).
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of design and data set resulted in significant differ-

ences (Table 5). Although the main effect of rotation

on correctness was not found to be significant, rota-

tion resulted in observable differences in response time

(Figure 5(b): FA on D2, MA on D3, and DA and FA

on D4). Pairwise comparisons showed that TA and

TD resulted in shorter response times than MA. This

finding suggests increased difficulty in performing the

task with MA, which also correlates with MA’s

decreased accuracy in comparison with TA and TD

on D3. Participants responded significantly faster on

D4 than D2 and D1. D4’s faster response also corre-

lates with its higher accuracy.

The presence of the significant interaction between

data and rotation supports our hypotheses that rotation

of the layout may impact the performance (H3). We

attribute the significant interaction between data and

rotation to the relative positioning of the nodes and flows

in relation to the way users scan the map from top-left.

Correct nodes were selected more often when they were

positioned at the top-left and top of the layout. This

finding is also consistent with the findings of the first

two tasks that indicated increased visual saliency and

thus easier perception of the flows that were placed at

the top-left and top of the interface. As Figure 5(a) sug-

gests, rotation seemed to impact responses in all designs,

whereas MA was the least affected. TD benefits from a

less cluttered layout, thanks to their tapered design and

the absence of arrowheads, and convergence of long flow

lines toward the destination regardless of the difference

between the two curves (Figure 6(c)).

We discuss that participants’ responses are likely to

be influenced by a variety of factors including the

number of competing nodes (answers) and the sal-

iency of nodes which is determined by the size and

position of the circle and length, width, color value,

and position of the flows that converge at each com-

peting node. In order to shed light into our discussion,

we illustrate the best performing designs per data set:

FA on rotated D1 (Figure 6(a)), TD on rotated D2

(Figure 6(b)), TD on rotated D3 (Figure 6(c)), and

FA on un-rotated D4 (Figure 6(d)). The top 2 most

common responses are labeled with the percentage of

users that selected them both for the map in the figure

and its 180� rotated version in parenthesis. Figure

6(a)–(c) highlights that nodes were selected more

often when they were positioned closer to the top of

the layout. Because of the complexity of the task, we

hypothesize that some participants took shortcuts and

used their intuition in performing the task instead of

thoroughly scanning the map to compare direction

and length of flows around the candidate nodes and

determine whether the node receives most of the top

10 flows. As a result, nodes that are visually more sali-

ent (e.g. larger in size, placed closer to top-left, and

top) were selected more often as shortcuts.

Task 4

To complete the fourth task, participants were asked

to select a cluster of net-exporters that are near one

another. As the experiment does not control for the

factors of perceptual grouping (e.g. proximity, similar-

ity), our goal for the analysis is exploratory, and we do

not aim to predict perceived groups, we rather focus

on what those groups are based on the combination of

design, data, and rotation. Each participant selected a

minimum of three circles to define a cluster.

ANOVA on log response times revealed significant

main effects of design, data set, and rotation (Table 6).

None of the interactions were found to be significant

and screen resolution was dropped from the model as

Table 5. Significant results for correctness and response time for Task 3.

Log regression on correctness ANOVA on log response time

Coefficients Z p Coefficients F p

R:D3 22.252 .024 Design 3.438 .008
R:D4 22.278 .022 Data set 4.022 .007

TD:D4 1.684 .092 Tukey’s HSD on log response time

D2 4.162 \.001 Pairs Diff. p

D4 4.841 \.001 MA–TD .1680 .008
TA 22.101 .035 MA–TA .2254 \.001
MA: DA: FA:

TA: TD: U: Un-rotated; R: Rotated

D2–D4 .1768 .009

D1–D4 .1610 .02

MA: Monotone Arrowhead; DA: Divergent Arrowhead; FA: Fading Arrowhead; TA: Tapered; TD: Teardrop; ANOVA: analysis of variance;
HSD: honest significant difference.
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it did not have a significant effect on response time.

Tukey’s HSD showed that D2 resulted in higher

response times than other data sets. This was because

participants’ answers varied greatly as D2 included

two alternative clusters, while the other data sets

included only one alternative. MA resulted in higher

response time than FA and TD.

We evaluated the differences among line symboliza-

tions by comparing the variation in participants’ deli-

neation of clusters. First, we calculated the percentage

of nodes selected as a part of a cluster for each

combination of design, data set, and rotation. Using

the percentage value of the nodes that were selected at

least once, we performed an ANOVA for each data set

with independent variables of rotation and design.

Neither design nor rotation resulted in a significant

difference. This suggests that unlike the first three

tasks, user responses in Task 4 were not influenced by

rotation or design.

Second, we calculated the percentage of the most

commonly selected clusters by participants for each

data set and design (Figure 7(a)). In Figure 7(a), light

Figure 6. Example flow maps used in Task 3: (a) FA on rotated D1, (b) TD on rotated D2, (c) TD on rotated D3, and (d) FA
on un-rotated D4.

Table 6. The effects of design and data set on response agreement and time for Task 4.

ANOVA on response agreement ANOVA on log response time

Coefficients F p Coefficients F p

Design 4.586 .018 Design 3.381 .009
Data 17.479 \.001 Data set 13.955 \.001

Rotation 3.799 .051

Tukey’s HSD on response agreement Tukey’s HSD on log response time

Pairs Diff. p Pairs Diff. p

FA–TA .0890 .027 MA–TD .1756 .009
TD–TA .0852 .034 MA–FA .1613 .019
D3–D1 .1485 \.001 D2–D4 .2993 \.001
D3–D2 .1265 \.001 D2–D3 .2067 \.001
D3–D4 .1114 .002 D2–D1 .2043 .002

U–R .0659 .050

MA: Monotone Arrowhead; FA: Fading Arrowhead; TA: Tapered; TD: Teardrop; ANOVA: analysis of variance; HSD: honest significant
difference.
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blue indicates the percentage of the most common

response per data set and design, and darker blue indi-

cates the percentage of the second most common and

the subset of the first two most common responses.

The subset includes user responses with nodes in

which each node exists either in the first or the second

most common answer. We then combined the two

most common and subset categories to derive a mea-

sure of agreement on responses. We performed an

ANOVA on the agreement measure with independent

variables data set and design (Table 6). Pairwise com-

parisons revealed that D3 resulted in less variation in

cluster descriptions (higher percentage of agreement)

than D1, D2, and D4; and FA and TA resulted in less

variation than TD, while differences between other

designs and data sets were not found to be significant.

Third, in order to analyze which common pairs of

nodes were selected as a part of a cluster for each data

set and design, we summed the number of times each

pair of node was selected and normalized it by the

number of participants to derive percent co-

occurrence of node pairs in all responses. We then

constructed an undirected graph in which the width

and color value of an edge represent the percent

occurrence of a node pair, and the size of the node

represents percent occurrence of a node in partici-

pants’ responses. Figure 8 illustrates (1) FA on un-

rotated D1 and (2) percent occurrence of nodes and

node pairs in cluster definitions. The most common

response for FA on D1 was 27% and included the

following nodes: CO, KS, MO, NE, IA, SD, and WI.

A total of 56% of the responses were a subset of the

most common response, and 22% was a subset of the

second most common response. Undirected graph of

node pairs (Figure 8(b)) reveals that nodes IA, MO,

and WI appeared in participant responses slightly

more than other node pairs. We attribute this finding

to all three nodes’ visual saliency and similarity in size

and proximity.

As another example, Figure 9 illustrates (1) MA on

un-rotated D4 and (2) percent occurrence of nodes

and node pairs in cluster definitions. The most com-

mon response for FA on D1 was 34% and included

the following nodes: IL, IN, KY, MA, OH, PA, and

WV. A total of 43% of the responses were a subset of

the most common response, and 16% was a subset of

the second most common response and included IL,

IN, and OH. Undirected graph of node pairs

(Figure 9(b)) reveals that pairs of nodes IL, IN, OH,

and PA appeared in participant responses more often

than the other node pairs. While proximity and simi-

larity of circle sizes are potential factors, we hypothe-

size that higher magnitude flows between the nodes

may contribute to the perception of these nodes to

appear as a cluster.

Rotation or orientation of the flow map significantly

affected all tasks that involved comparison of direc-

tion, magnitude, and distance, whereas clustering was

not affected by rotation. We attribute this finding to

the nature of clustering task, as participants

Figure 7. Participant responses and response times for Task 4: (a) the most common answers by their percentage.
Categories ‘‘Most Common’’ and ‘‘Subset’’ illustrate the percentage of responses that participants agreed upon per data
set and design and (b) distributions of response time (in seconds).
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predominantly used spatial attention to focus on a

region of the map to find out similar nodes positioned

near one another.

We hypothesized (H9) that designs DA and FA

would ease the perception of export clusters as color

scheme of the flows would enhance the discriminability

of node clusters. The results showed that FA and TD

led to more accurate and faster responses, whereas DA

was not found to have a significant on correctness or

response time. This could be attributed to the ability

of FA to produce a less cluttered display which eventu-

ally enhances the perception of clusters. Decreased dif-

ficulty for TD can be attributed to its asymmetric

tapered design where the flow lines are thin and start

from a point at the origin and thus result in less clutter-

ing for detecting export patterns.

Discussion

Our findings indicated that there is potential useful-

ness for all of the five symbolizations we tested; how-

ever, the influence of the design on performance and

perception depends on the type of the task. We recom-

mend that the choice of line symbolization should be

guided by a task taxonomy which end users are

expected to perform. We guide our discussion on our

results by comparing the efficiency (response time)

and effectiveness (correctness) of the five line symboli-

zations across tasks (Table 7).

Hypotheses

H1. The results confirmed our hypothesis that MA

was significantly faster to read and more

Figure 8. Example flow map for Task 4: (a) FA on un-rotated D1 and (b) undirected graph of percent co-occurrence of
nodes that commonly appeared in participant responses.

Figure 9. Example flow map for Task 4: (a) MA on un-rotated D4 and (b) percent occurrence of nodes that commonly
appeared in participant responses. Labeled nodes represent the most common answers.
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accurate in judging relative magnitude (Task 2) and

direction tasks (Task 1), and its performance was

found to be no different than other designs in spatial

focusing of long flows (Task 3) and clustering of net-

exporters (Task 4). Because of its consistent perfor-

mance across tasks, data and rotation, and its simple

design, we recommend MA for designing flow maps

for exploratory visualization that involve multi-

purpose tasks.

H2 and 3. The results confirmed our hypotheses that

data (H2) and layout orientation (H3) have strong

effect on performance and perception of patterns in

flow maps. However, the effect was dependent on the

type of the task. While Tasks 1, 2, and 3 were signifi-

cantly affected by rotation, Task 4 was not. Earliest

attention of users and fixations are influenced by three

main factors: (1) salience of areas in the image, (2)

memory and expectations about where to find infor-

mation, and (3) task and information at hand.58,60 We

attribute the unchanged response of users in Task 4 to

the nature of the clustering task where participants

predominantly use spatial attention to focus on a

region of the map to find out similar nodes positioned

near one another (i.e. visually salient blobs), and this

task potentially overrides the effect of eye gazing beha-

vior. On the other hand, in Tasks 1, 2, and 3, users

compare individual elements (i.e. nodes, flows) rather

than blobs, and rotation alters the patterns by chang-

ing the relative position of the flow lines and thus the

salient areas in the image. As a result, visually salient

flows that are placed along the direction of users’ gaz-

ing behavior (i.e. from top-left, top-center, and left-

center) possibly stay in their short-term memory, as

they compare properties of all other flows in the map.

H4. The results confirmed our hypothesis H4 that

arrowheads are useful in direction tasks as MA

outperformed TA in accu-

racy for tasks to identify dominant direction (Task 1)

and spatial focusing of long flows toward a destination

(Task 3).

H5. We hypothesized that the use of the divergent

color scheme as an additional visual variable to encode

direction between origins and destinations, FA

, and DA would produce

higher correctness and lower response time for the

dominant direction task (H5). However, this was not

the case as FA and DA were less accurate than MA

, but more accurate than TA

and TD in Task 1.

Moreover, FA and DA resulted in relatively more

stretched response time distributions with higher aver-

age response times, which was caused by greater varia-

tion in response times among participants. Despite its

use as a redundant visual variable, we argue that

increased difficulty in performing direction tasks with

the divergent color scheme was likely because partici-

pants’ attention to compare directions was divided

among multiple attributes (e.g. two divergent color

hues, arrowhead, and curvature) which made percep-

tual judgments more difficult than MA when partici-

pants could attend to only arrowhead and curvature

to evaluate directions.59

We expected that FA would have an

increased performance as compared to DA

and would perform as well as MA

, thanks to producing a less cluttered

flow map by line shortening. However, the results

Table 7. Performance differences among the five designs by task.

Task MA DA FA TA TD

C T C T C T C T C T

T1: Dominant
direction
T2: Flows with
the top 3
magnitude
T3: Spatial
focusing of
long flows
toward a
destination
T4: Clustering
of net-
exporters

C: correctness; T: response time; MA: Monotone Arrowhead; DA: Divergent Arrowhead; FA: Fading Arrowhead; TA: Tapered; TD: Teardrop.
Check marks illustrate the most accurate (C) and fastest response (T) for each task.
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showed that FA’s performance on identifying the

dominant direction of flows was lower than that of

MA, and there were no significant differences between

FA and DA. We argue that this could be due to the

use of line shortening, which makes flows with smaller

magnitudes become more salient as compared to other

designs. As a result, participants’ attention is divided

among a larger set of flows and making the compari-

sons more difficult and time-consuming, this results in

decreasing correctness and increasing response time:

H6. Because of its decreased curvature, additional use

of color value from light to dark and use of line width

from narrow to wide instead of wide to narrow, we

hypothesized (H6) that TD would out-

perform TA ; however, we did not find

any significant differences in correctness among the

two designs. However, TD was the most efficient in

response time and was significantly quicker than FA

and DA . We recommend

TD for direction tasks when response time is

important.

H7. The results confirmed our hypothesis (H7) that

the redundant visual variables of color value and line

width would produce higher correctness and lower

response times for MA and TA

in the magnitude task (Task 2).

Grayscale coloring scheme used in MA and TA helped

users see the contrast between the darker, more domi-

nant flows, versus the lighter and less salient smaller

flows which significantly increased the performance in

magnitude task. The test results also confirmed our

hypothesis on TD’s failure on magnitude task due to

its mixed use of varying color value and thickness

across the length of a flow line. While TD

could potentially be useful in direction

tasks, it must be used in caution when displaying an

edge attribute (e.g. magnitude or length). Both FA

and DA resulted in lower

correctness and increased response time in judging the

magnitude of flows because of increased difficulty of

the search task caused by the divergent color scheme

and use of just one variable (line width) to encode

magnitude while other designs employed color dark-

ness as a redundant variable.

H8. We expected MA , TD

, and DA to be successful

on Task 3 (H8) which was confirmed by our results.

As it emphasizes the destination end of flows which

Task 3 is looking for, TD was effective in perceiving

convergence patterns toward a destination, whereas

TA resulted in lower correctness as it has strong

emphasis on the origin of flows. We also expected FA

to be ineffective for perceiving patterns

that involve long flows as line shortening results in

directional ambiguity especially in displaying long

flows;17 however, FA was as effective as MA, TD,

and DA.

H9. We hypothesized (H9) that design DA

and FA would ease the

perception of net-export clusters as color scheme of

the flows would enhance the discriminability of net-

exporters. The results confirm this hypothesis with

FA, whereas DA was not found to have a significant.

In addition to FA, TD produced more

accurate and faster responses. The success of both FA

and TD indicates that reduced cluttering help the per-

ception of node clusters. Decreased difficulty for TD

can be attributed to its asymmetric tapered design

where the flow lines are thin and start from a point at

the origin and thus result in less cluttering for detect-

ing net-exporters which potentially include a large

number of out-flows. Line symbolization could over-

ride node proximity and similarity effects when per-

ceiving groups (clusters). Therefore, for tasks that

require the perception of node clusters could use line

designs that emphasize the nodes.

Limitations

We would like to acknowledge that our findings are

limited by the experimental parameters, and some of

the conclusions may not apply to the general compari-

son of flow map designs. We speculated on user strate-

gies in order to explain our results; however, further

studies that employ eye-tracking must be conducted to

study cognitive processes and behaviors linked to flow

map reading.

Since the participants were from AMT with a cer-

tain level of computer skills, the findings of the study

are not necessarily representative of a broader popula-

tion with diverse backgrounds. Because the test is not

administered by an experimental facilitator, confound-

ing factors such as multi-tasking and factors related to

the test environment such as display type and size,

lighting, and subjects’ viewing distance and angle.57

User performance and perception are greatly influ-

enced by not only the complexity of the flow map and

task but also user motivation and inattention. It is dif-

ficult to know how much time is due to users’ inatten-

tion and response submission. While the participants’

ability to identify and click on a circle is irrelevant of

their judgment and perception, it affects the process of

pattern search and thus the test performance. Divided

attention becomes more difficult when tasks are

harder. For Task 3, participants evaluated both node

and flow elements and searched for patterns of direc-

tion and length. We hypothesize that some participants

took shortcuts to select nodes that are visually more

salient (e.g. larger in size, placed closer to the top).
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Administered tests coupled with eye-tracking studies

could reveal the pattern search process and help

understand the actual perception of patterns.

Conclusion

We introduced a user evaluation study that compared

line symbolizations for directed origin–destination flow

maps. Our study is the first that tested the usefulness

of five commonly used line symbolizations in origin–

destination flow mapping: MA , DA

, FA , TA ,

and TD . Participants in our study were

asked to perform four tasks: identifying the dominant

direction of flows, top flows with the highest magni-

tude, spatial focusing of long flows toward a destina-

tion, and clustering of locations with net-outflows. We

evaluated the performance (i.e. correctness and

response time) and perception of the five line symboli-

zations using real-world flow data sets and systematic

rotation to take into account the layout orientation

and potential learning effects. We recruited our partici-

pants from AMT which is an online crowdsourcing

platform.

The results supported our hypothesis that data and

orientation (rotation) both have significant effect on

performance and perception of patterns in flow maps.

Building upon the previous literature in image viewing

and gazing behavior, detailed results on user responses

suggest that the effect of rotation on performances

could be due to the change in visual saliency of node

and flow patterns in relation to the way users scan the

map.

According to the results of our study, MA

performed well with minimized subject

variations across data sets and rotation, higher perfor-

mance, and efficiency in judging relative magnitude

(Task 2) and direction tasks (Task 1). Our results also

highlighted FA as a potentially useful

design, thanks to its use of line shortening and origin–

destination coloring with a divergent color scheme.

While line shortening improved FA’s performance in

direction tasks, it also created increased variability in

responses as less cluttered flow maps increased the sal-

iency of obscured and small flows and thus the cogni-

tive load and number of flows for comparison. From

this study, we can conclude that there is potential use-

fulness for all of the five symbolizations we tested;

however, the influence of the design on performance

and perception depends on the type of the task. We

recommend that the choice of line symbolization

should be guided by a task taxonomy which end users

are expected to perform.

In order to share the designs and data sets, we

developed an interactive flow mapping application

(http://tinyurl.com/commodityflows) that allows users

to dynamically adjust a variety of flow map symboliza-

tion (including the Bézier curve designs evaluated in

this study) and visualize data sets of commodity flows

(Figure 10).

Future work

In this experiment, we evaluated five prominent flow

line symbolizations. However, one can combine differ-

ent visual variables to obtain designs that could per-

form better or worse. Thanks to its divergent color

scheme and line shortening to reduce crossings of

flows, FA is potentially useful for tasks

that emphasizes origins or destinations such as Task 3

which emphasizes destinations and Task 4 which

emphasizes origins. Line shortening is useful in reduc-

ing visual clutter, and many different styling of par-

tially drawn lines are possible which may perform

better than FA . For graphs with rela-

tively short and local flows, FA resem-

bles DA as line shortening is applied in

proportion to flow length. We recommend future stud-

ies that analyze divided attention and compare varying

lengths of line shortening to evaluate its effect on a

series of flow map tasks. While TD pro-

duced faster response times, its correctness was found

to be significantly lower due to the double use of color

value to depict direction and magnitude. To address

directional ambiguity and benefit from line shortening,

one can combine TD and TA with FA to derive the fol-

lowing designs: Fading Tapered (FATA)

and Fading Teardrop (FATD) .

Given the large number of possible flow map reading

tasks, it is challenging to select tasks to evaluate the

effectiveness and efficiency of flow maps. For a compre-

hensive evaluation of flow map reading, there is a need

to construct a typology of patterns and visual tasks.

Similar work has been done in movement pattern analy-

sis,61 group level comprehension in graphs,30,31 and a

multi-level typology of abstract visualization tasks.62

While we focused on the influence of flow map

symbolization, design decisions, and the effect of data

on understanding a set of patterns in flow maps, future

studies are needed to focus on higher level processes

such as derivation of meaning and decision-making

using flow maps. We believe that an insight-based

approach that analyzes how users generate insights

into flow data and visualization would be valuable.

For future work, there is also a need to assess

other alternative designs which could incorporate car-

tographic interaction techniques such as highlighting,
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isolations, and flow animations that could help reduce

the cognitive load associated with effects such as edge

tunneling, edge crossings, and crossing angles. We also

recommend future studies to control and compare

properties such as number of nodes, edges, and edge

crossings using flow map tasks that are designed to

explore holistic and geographic patterns.
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