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ABSTRACT
Previous studies have introduced various approaches for visualizing the spatial and temporal 
distributions of sentiments expressed on social media. However, many existing methods either 
overlook the evolving nature of sentiments or fail to account for the spatial distribution of 
sentiment trends related to specific topics. To gain a comprehensive understanding of how 
sentiments evolve in relation to topics and geographies, it is essential to capture the dynamic 
nature of sentiment through time series analysis and geovisualization. This article introduces 
a workflow that combines natural language processing, spatial time series analysis, and geovisua
lization techniques to identify and visualize the variations in sentiment trends on Twitter across 
different geographic regions and topics. By examining the 2016 presidential debates as a case 
study, we uncover distinct temporal patterns in sentiment distributions across various topics and 
states. Our findings also show that adjacent states do not always share similar sentiment trends, 
and that geographic clusters with similar sentiment trends also vary across topics. Failing to 
consider these variations may result in misunderstanding public discourse and sentiments since 
they are diverse and dynamic in nature.
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1. Introduction

Scholars often attach online communities on social 
media to physical places, whether it is about elections 
(Liu et al., 2021), public health (Eichstaedt et al., 2015), 
simple demographics (Martín et al., 2021), and disasters 
(Zou et al., 2018). However, we know that social media, 
by its very nature, often transcends these physical 
boundaries, and topics and sentiments diffuse among 
places that are far apart from each other. On social 
media, millions of individuals express their thoughts 
and emotions while interacting with one another, 
which often influences key forms of political behavior, 
like voting (Key & Heard, 1949; Kinsella et al., 2015). At 
the very least, this implies that topics and sentiments on 
social media may be articulated differently in one online 
community compared to another. Unfortunately, 
regardless of the level of aggregation (e.g. county, state, 
or country), previous studies have not fully captured 
this spatial dynamic, especially when it is combined 
with temporal trends. Also, despite a few attempts to 
identify spatiotemporal patterns of topics and senti
ments from social media posts (Koylu et al., 2019; Li 
et al., 2020), existing studies often look at spatial 

patterns and temporal trends separately. Separating 
these two is problematic since the variation in temporal 
trends is often correlated with spatial patterns. For 
example, in the context of the 2016 election, certain 
states were predisposed to vote for Donald Trump 
based on their past voting behavior. So, when something 
positive happened to the Trump campaign, these states 
were more likely to express this sentiment online. Those 
looking at the aggregated trend may conclude that sen
timent was becoming more positive toward Trump dur
ing this period, but when decomposed, the time series 
would show that the shift in sentiment was primarily 
attributed to only a handful of states. Therefore, to 
accurately understand the sentiment toward a topic, it 
is crucial to capture the dynamic nature of sentiment, 
which further requires the analysis of time series trends 
of sentiments in relation to subtopics, and geography.

In this study, we introduce a workflow to identify and 
visualize the spatio-topical sentiment trends on social 
media by integrating natural language processing with 
spatial time series analysis and geovisualization. We use 
the term “spatio-topical sentiment trend” to emphasize 
the dynamic nature of sentiments that vary across both 
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geographic and semantic (topical) spaces. Our study 
makes three contributions. First, our workflow captures 
the evolution of emerging and disappearing topics along 
with the associated sentiments, highlighting the tem
poral variations in sentiments across topical (semantic) 
and geographic spaces. Second, our workflow helps 
identify regions that share similar reactions to prevalent 
topics on social media. We argue that this is indicative 
of the different types of communities that can form 
online, but we also think it could help identify relevant 
blocs of traditional boundaries such as geopolitical 
regions that could prove helpful for understanding var
ious forms of behavior, like voting. Third, we introduce 
a novel non-contiguous rectangular cartogram that 
visualizes spatio-topical sentiment trends (i.e. sentiment 
trends in relation to subtopics and geographies) and 
regions that share cohesive reactions to events. Our 
workflow and cartogram may help scholars identify 
patterns that would be difficult to unearth without inte
grating natural language processing, spatial time series 
analysis, and geovisualization.

To demonstrate our workflow, we use Twitter data 
related to the United States presidential debates of 2016, 
which sparked considerable online discourse regarding 
various political and social issues. These debates have 
been studied extensively in the literature (Robertson 
et al., 2019), but little has been written about how the 
associated online discussions differed in one region or 
another. Moreover, past work has only used snapshots 
of online discussions to explore issues related to candi
date sentiment (Yaqub et al., 2017). Although we do not 
look at whether one candidate is preferred over another, 
our study is the first to identify and visualize spatio- 
topical sentiment trends, ultimately giving us a better 
sense of what online discourse looks like regarding these 
important events. The rise of Donald Trump has 
received a lot of scholarly attention (Carmines et al.,  
2016). This study will help shed new light on the subject 
by looking at how online communities formed around 
the discussion of Donald Trump and Hillary Clinton 
shortly after the 2016 presidential debates. While our 
article centers around the 2016 presidential debates to 
contextualize our findings, we also expand our scope by 
conducting a case study on tweets during hurricane 
Irma in 2017. This additional case study serves as 
a demonstration of the generalizability and applicability 
of our workflow to other research domains (see 
Appendix B).

2. Related work

Retrieving sentiments toward different topics from 
social media is challenging since one cannot easily 

capture and summarize the diverse set of topics and 
sentiments expressed by many individuals from var
ious geographic areas. Previous work conducted topic 
and sentiment analysis on social media data to iden
tify public opinions and emotions about events such 
as natural disasters (Garske et al., 2021; Sit et al., 2019; 
Yuan et al., 2020), infectious diseases and vaccines 
(Du et al., 2017; Han et al., 2020; Hu et al., 2021), 
the stock market (Xu & Keelj, 2014), and elections 
(Wu et al., 2017; Yao & Wang, 2020). Many studies 
show that there are spatial and temporal variations in 
public sentiment and subtopics about an event. For 
instance, Gruebner et al. (2018) extracted negative 
emotions from tweets related to Hurricane Sandy 
and identified variations in their spatial patterns 
over time. They found that negative emotions were 
clustered not only spatially but also temporally. Han 
et al. (2020) extracted topics related to COVID-19, 
such as seeking medical help, willing to return to 
work, and praying, and then investigated the spatial 
and temporal distributions of the social media posts 
for each topic. Koylu et al. (2019) analyzed temporal 
and spatial patterns of sentiments toward immigration 
before and after the Muslim Ban to identify temporal 
changes in sentiments and subtopics. Although these 
studies show how social media posts have distinct 
spatial and temporal patterns of topics and senti
ments, they fail to capture sentiment trends that vary 
across subtopics, geography, and time.

There have been a few attempts to analyze topics and 
sentiments simultaneously, but they ignore either space 
or time dimensions. For example, Jeong et al. (2019) 
analyzed how sentiments varied based on subtopics but 
did not examine how sentiments varied across space and 
time. Diakopoulos and Shamma (2010) analyzed the 
change in sentiment over time in relation to subtopics; 
however, they did not consider spatial patterns. Li et al. 
(2020), Koylu (2018), and Koylu (2019) introduced con
ceptual and analytical approaches to investigate the 
temporal evolution of topics and their spatial patterns, 
but neither of the studies considered sentiments toward 
different topics. Information in social media has multi
ple dimensions including space, time, topic, and senti
ment (Dunkel et al., 2019; Janowicz et al., 2019), and 
they are all interconnected (Wang & Ye, 2018). Despite 
this interconnectedness, no attempts have been made 
thus far to uncover time series trends of sentiments in 
relation to topics and geography. This is problematic 
since an accurate understanding of sentiments toward 
a topic necessitates capturing the dynamic nature of 
sentiment, which further requires the time series analy
sis of sentiment trends in relation to topics and 
geography.
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3. Methodology

We introduce an analytical workflow that integrates 
natural language processing with spatial time series 
analysis and geovisualization to identify and visualize 
spatio-topical sentiment trends on Twitter. The term 
“spatio-topical sentiment trends” refers to the time ser
ies trends of sentiments that are embedded in and vary 
across both geographic spaces and topics. Our goal is to 
capture the variations in sentiment trends in relation to 
both sub-topical themes and geographic areas and iden
tify geographic areas that have similar sentiment trends. 
Our workflow consists of four parts: data processing, 
natural language processing, spatial time series analysis, 
and geovisualization (Figure 1). In the following sub
sections, we explain each component of our analytical 
workflow.

3.1. Data processing

We collect Twitter data using the Streaming API and 
a set of keywords related to an event. Among the col
lected tweets, we only include original tweets written in 
English by filtering out retweets, duplicates, and non- 

English tweets. To capture time series trends of senti
ments, our workflow classifies topics and sentiments at 
the tweet level and computes sentiment trends of tweets 
by geography and subtopics. However, this process 
makes the time series data for each geographic unit 
and each topic become sparser with missing observa
tions at some time points, which makes it difficult or 
impossible to apply time series analysis. To alleviate the 
problem of data sparsity, we examine and choose opti
mal spatial and temporal units of aggregation. In our 
case study, we use states as the spatial unit of analysis to 
summarize the temporal trends. Although states are 
large units of aggregation, some states have fewer 
Twitter users, which requires combining those states 
into groups or regions that share similar cultural and 
socio-political composition.

As public reactions to events on social media are 
bursty, the number of tweets produced during and 
immediately after an event corresponds to a large por
tion of all tweets produced about the event. Bursty 
reactions to an event usually exhibit an exponentially 
decreasing distribution, so the number of tweets 
decreases sharply after each time step. It is another 
significant challenge in time series analysis: whichever 

Figure 1. The analytical workflow of this study.
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temporal unit is determined to represent the time unit, 
data further away from the time of the event become 
sparser. To address this issue, we propose temporal 
units with varying time lengths that could range from 
minutes to hours and days, so that time series data are 
distributed approximately evenly throughout the whole 
period of analysis. We further discuss the choice of 
spatial and temporal units and aggregation in 
Section 4.1, in which we justify our choice with the 
case study.

3.2. Natural language processing

3.2.1. Temporal topic modeling
We first extract topics for each tweet using Latent 
Dirichlet Allocation (LDA) (Blei et al., 2003). LDA 
estimates a probabilistic distribution of latent topics 
for each document based on the co-occurrence and 
frequency of the words in the documents and returns 
a multinomial distribution that assigns each document 
a mixture of topics (Blei et al., 2003): 

P ZjW;Dð Þ ¼
Wzþβw

total words in Z þ β
� DZþα 

where P ZjW;Dð Þ refers to the probability that word W 
from document D falls into topic Z. This probability is 
calculated by multiplying the normalized frequency of 
word W in topic Z with the number of words in topic Z 
in document D. As a result, LDA produces 
a probabilistic distribution of topics across documents 
and words across topics. We consider each tweet as 
a document for performing LDA in this study.

We use a temporal topic modeling approach to cap
ture the temporal evolution of topics. Ignoring temporal 
evolution is problematic for several reasons. First, the 
ebb and flow of online discussions mean that a topic 
could be present in one instance but disappear in the 
next. Consequently, when the LDA model estimates the 
topic proportions at the corpus level, that topic would 
be underrepresented. By incorporating a temporal 
dimension, our approach does not suffer from the 
same limitation since topics can be tied to specific 
combinations of space and time. Second, collective dis
course is often diverse and spontaneous, meaning our 
approach better represents these real-time discussions. 
Indeed, to think of tweets at the corpus level ignores the 
way those tweets are actually produced. Instead of 
thinking of a larger topic distribution encompassing, 
when people interact online, they are often reacting to 
an event here and now.

To identify the optimal topic model for each period, 
we perform a series of topic models for each time period 
(or an event such as the presidential debates used in this 

study). Since topic modeling results vary depending on 
the number of topics, we experiment with topic models 
with 5 to 60 topics (i.e. 56 models) for each period that 
covers an event. For example, in our case study, these 
events are the three presidential debates. The time per
iod for each event is from the beginning of each debate 
to 1 week after the debate when the next debate takes 
place, except the last debate. To determine the optimum 
number of topics that minimize the number of duplicate 
topics, we compare the similarity of topics between 
models of the consecutive number of topics (e.g. such 
as 5-topic model and 6-topic model). To compare the 
similarity of topics and identify an optimal model for 
each time period, we calculate cosine similarity between 
every pair of two topics from all those 56 models. Cosine 
similarity measures the cosine of the angle between the 
two word vectors that form each topic and their word 
frequencies (Huang, 2008), which ranges between 0 and 
1. We follow the rule that the model with a larger
number of topics (i.e. 6) should have a cosine similarity
value of less than 30% with any topic of the model with
a smaller number of topics (i.e. 5). A larger similarity
value above this threshold indicates the overlapping of
topics between the two models. When there are fewer
topics, unique or non-overlapping topics are often com
bined into fewer topics, whereas a larger number of
topics result in topics with overlapping content.

After identifying the optimal topic model for each 
period, we create a network of pairwise topic similarities 
to link similar topics within the same time period as well 
as topics of the optimal models from other periods. 
Figure 2 illustrates the concept of finding the most 
similar pairs of topics given a threshold of 0.7 (or 
70%) cosine similarity of topics within and between 
topic models of two different time periods. Using these 
edges between topics, we construct a network of topic 
similarity in which a node is a topic, and an edge 
represents the similarity between a pair of topics. We 
use the Louvain community detection method to group 
topics into topic clusters. From now on, we use the term 
“subtopic” to refer to each topic in a topic model, while 
we use the term “topic” to refer to “a cluster of topics.”

Grouping subtopics within and across different tem
poral models is essential because tracing temporal 
trends requires robust time series of sentiment scores. 
Without grouping, most emerging topics suffer from 
sparse time series data, and therefore, it would become 
impossible to identify their temporal trends of subtopics 
using time series analysis. Although grouping subtopics 
into topics (topic clusters) seems to lose the variations 
within each topic, one can always break each topic into 
its original subtopics and trace their semantic and tem
poral patterns. While some topics are formed by a larger 
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number of subtopics that can be considered topic 
chains, some other topics may be formed by a single 
or only a few subtopics because they may represent 
a short-lived reaction of Twitter users to a particular 
event. Our topic modeling workflow allows capturing 
both cases.

We recalculate document-topic and topic-word 
probability matrices for each tweet to combine the 
probability of subtopics that fall into the same topic 
(topic cluster). Finally, we define the topic that each 
tweet belongs to using a threshold of 15% probability. 
So, one or more topics can be assigned to each tweet if 
the cumulative probability of the topic for a given docu
ment is above 15%. For example, if the probability of 
a tweet being included in Topic 1 is 20% and that in 
topic cluster 3 is 40%, then this tweet is classified into 
both Topic 1 and Topic 3. The 15% threshold allows us 
to filter out the noise in the multinomial distribution of 
topics per document.

3.2.2. Sentiment classification
Sentiment classification allows the identification of peo
ple’s emotions, sentiments, and attitudes expressed in 
natural languages such as tweet texts (Koylu et al., 2019; 
Parimala et al., 2021). Using sentiment analysis, we can 
understand the polarity (i.e. positive, or negative) as well 
as different types of emotions (e.g. happy, angry, and 
sad) of each text. In this study, we identify the sentiment 
of each tweet using sentiment analysis using the 
Recursive Neural Tensor Network (RNTN) model 
developed by Socher et al. (2013). RNTN uses the 
Stanford Sentiment Treebank and Recursive Neural 

Network, which takes texts of any length as input and 
returns the probability distribution of five sentiment 
classes for each tweet: very positive, positive, neutral, 
negative, and very negative.

Using the RNTN output, we reclassify the sentiment 
of each tweet into three classes: positive, neutral, and 
negative, and our approach is significant in two ways. 
First, we include the neutral sentiment category, unlike 
many previous studies excluding neutral and focusing on 
extreme sentiments. It is important to consider neutral 
because neutral usually makes up a large portion of the 
sentiment distribution. Thus, excluding neutral may 
result in removing data excessively and making time 
series analysis difficult because of data sparsity. Second, 
we classify the sentiment of each tweet by considering 
the distinction between positive and negative sentiments 
instead of using the most prominent sentiment class 
whose probability is the highest from the RNTN output.

We first compute the sentiment score of each tweet 
by subtracting the sum of two negative probabilities 
(negative and very negative) from the sum of two posi
tive probabilities (positive and very positive), simply 
keeping neutral score as 0. This makes the possible 
range of new sentiment scores to be between −1 and 1. 
For example, there is a tweet A saying “Are you ready to 
watch the debates?” with the probabilities of [very posi
tive 0, positive 0.1, neutral 0.9, negative 0, very nega
tive 0] and a tweet B saying “That’s a difficult question. 
I like it!” with the probabilities of [very positive 0.2, 
positive 0.3, neutral 0.1, negative 0.3, very negative 0.1] 
from the RNTN output. Then, the new sentiment scores 
of tweets A and B are both 0.1.

Figure 2. Clustering topics from models of different time periods.
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Using these scores, we can easily understand the 
overall sentiment and compare the sentiments of 
different tweets. However, this sentiment score does 
not show a more detailed view of how polarized the 
sentiment trends are. Both of the example tweets 
above have 0.1 as their sentiment scores, but these 
two have a substantial difference in sentiment dis
tribution. Tweet A is more neutral, while tweet B is 
more polarized, which is hidden in sentiment scores. 
Therefore, from sentiment scores, we classify each 
tweet into positive if the score is greater than 0.33, 
negative if less than −0.33, and neutral if between 
−0.33 and 0.33. This process allows us to not only
identify more distinct extreme sentiments while not
excluding neutral sentiment but also understand the
polarization of each tweet based on the distribution
of its sentiment classes. Also, we can easily compare
the distribution of three sentiment classes over time,
while sentiment scores help us capture overall
changes in sentiment trends and identify similar
trends across geography.

3.3. Spatial time series analysis

3.3.1. Identifying spatio-topical sentiment trends
To identify the spatio-topical variation of sentiment 
trends, we first construct time series of sentiment 
scores for each geographic area and subtopic. We 
calculate the average sentiment score of all tweets in 
each area and for each topic. However, partitioning 
tweets by geographic units and subtopics makes the 
time series data even more sparse, causing spurious 
fluctuations in the sentiment score. To address this 
issue, we employ time series smoothing and fine- 
tuning of temporal and spatial dimensions. First, we 
apply a moving average window for smoothing the 
time series of sentiment scores. For example, a three- 
day moving window smooths the sentiment score for 
a day by calculating the average sentiment of the day 
of estimation, the day before and the day after. Our 
objective is to smooth the data as little as possible to 
remove large fluctuations and keep the trends as 
similar as possible to the original time series. 
Second, we apply a fine-tuning approach to reaggre
gate data both temporally and spatially. We employ 
varying temporal periods to determine and summar
ize sentiment scores in temporal units to adjust for 
bursty time series distribution. Also, we further 
regroup geographic units with sparse time series 
data based on their trend similarity and geopolitical 
coherence. We explain the fine-tuning of the tem
poral and spatial aggregation with our case study in 
section 4.1.

3.3.2. Grouping places with similar spatio-topical 
sentiment trends
After extracting spatio-topical sentiment trends, we dis
tinguish these trends among different geographies. We 
first identify the groups of geographic areas that share 
similar sentiment trends by evaluating the similarity of 
the sentiment trends between geographic areas for each 
subtopic by using dynamic time warping (DTW). First, 
to measure the similarity between two sentiment time 
series, we use DTW which compares the patterns of two 
or more time series and identifies non-linear relations 
between them by handling different lengths, noise, 
shifts, and amplitude changes (Brown & Rabiner, 1982; 
Stübinger & Schneider, 2020). DTW computes the 
minimum distance of an optimal match between two 
time series, so the DTW distance between two time 
series becomes smaller as they have more similar trends. 
We compute the DTW distance for every pair of two 
sentiment trends (i.e. sentiment trends of two geo
graphic areas) and calculate the pairwise similarity 
among all areas. We create an undirected network 
graph of geographic areas based on their similarities. 
In this graph, a node represents a geographic area (e.g. 
state), and an edge represents the time series similarity 
of two geographic areas, and the edge weight is deter
mined by the DTW distance. Because we initially calcu
late DTW for edges between all nodes, a large 
proportion of edges has large DTW distances showing 
little similarity between nodes. Therefore, we prune the 
edges by eliminating the pairs whose similarities are less 
than the upper quartile of all similarities while keeping 
at least one edge for every node. We then perform the 
Louvain community detection method (Blondel et al.,  
2008) to identify nodes (geographic areas) that share 
similar sentiment trends for each topic. We later use 
the resulting clusters of the Louvain community detec
tion for visualizing similar spatio-topical trends using 
a time series cartogram.

3.4. Geovisualization

To visualize the spatio-topical sentiment trends, we 
develop a non-contiguous rectangular cartogram for 
each topic. Each geographic unit is represented with 
a bar chart that illustrates the distribution of sentiment 
classes – positive, neutral, and negative – over time. In 
these bar charts, the sum of positive, neutral, and nega
tive classes is 100%. So, a bar chart with 10% positive 
and 10% negative indicates that it also has 80% neutral 
sentiment. Therefore, the charts also include neutral 
tweets, which are illustrated by the empty spaces up 
and down from the positive and negative percentage 
values. We shrank the charts to keep them compact 
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and highlight the extreme positive and negative tweet 
distributions. Therefore, the white spaces above and 
below the positive and negative bars are shorter and 
end around approximately 35% rather than 50%. 
However, one could still compare the relative presence 
of neutral tweets for each topic and each geographic unit 
by comparing the white spaces in each chart.

Along with charts for each geographic unit (i.e. 
state in our case study), we include a global time series 
chart (i.e. “All States” in our case study) to represent 
the average sentiment distribution per subtopic. We 
differentiate chart sizes based on the number of tweets 
belonged to each geographic unit for each topic. To 
determine the size of each chart for each geographic 
unit, one can use proportional scaling based on the 
number of tweets. However, using proportional scal
ing of charts generate vast differences between the 
chart sizes. Thus, we employ Jenks natural breaks 
classification to group charts into three sizes. Using 
classification to differentiate chart sizes helps readers 
perceive the size differences between the charts and 
still be able to distinguish sentiment trends between 
charts. The placement of these charts is determined 
based on the size of each chart and the location of 
each geographic unit.

From these charts, map readers could observe senti
ment trends by comparing bar charts; however, identi
fying similar trends is challenging. To help alleviate the 
comparison task, we color chart frames and grid lines 
that reference timeframes on the x-axis and sentiment 
scores on the y-axis in each chart using a distinct color 
hue based on the geographic clusters sharing sentiment 
trends. Also, we include a chart with time series graphs 
of sentiment score by cluster on the bottom left to make 
it easy to observe how sentiment trends change for each 
cluster. A word cloud representing each topic is also 
included on the bottom right to explain the semantics of 
each topic of the sentiment trends.

4. Results

4.1. Case study and data processing

We use the 2016 United States presidential debates as 
a case study. The first debate took place on 
26 September 2016, followed by the second debate on 
9 October 2016, and the third debate on 
19 October 2016. The participants were two major pre
sidential candidates, the Democratic nominee Hillary 
Clinton, and the Republican nominee Donald Trump. 
The debates sparked active discussions on social media, 
particularly Twitter, which makes it interesting to inves
tigate how sentiment trends varied across different 

geographies and over different subtopics throughout 
the progression of the debates.

Presidential debates have been a focal point of con
siderable scholarship (Kraus, 2013). Of this work, our 
study speaks most to the literature on how presidential 
debates are discussed on social media platforms like 
Twitter (Zheng & Shahin, 2020). Since debate- 
watching produces more informed citizens and makes 
citizens more likely to participate in politics (Jamieson 
& Birdsell, 1990), looking at how presidential debates 
are discussed online is especially important to under
standing American democracy (Houston et al., 2013). 
This is especially true with regard to the 2016 presiden
tial debates (Jennings et al., 2020), which were viewed by 
84 million people (Grynbaum, 2016) and was the most 
tweeted presidential debate at that time (White, 2016). 
Although previous scholars have discussed the impor
tance of live-tweeting this debate and others (Houston 
et al., 2013), the present study considers how online 
communities can form around such discussions. 
Instead of thinking of Twitter users as a collection of 
individuals, we are interested in how Twitter users 
organize themselves – through their shared discourse – 
into organic clusters, many of which transcend tradi
tional geographic boundaries.

To understand this collective discourse, we first col
lect Twitter data based on the keyword in tweet texts 
and hashtags. For the keyword, we explicitly use only 
“debates” to study conversational discourse related to 
the debate events. In this study, the keyword “debates” 
can represent the presidential debates of 2016 because 
we study a limited time period during these debates that 
are major social events, as well as leading topics on 
Twitter. Indeed, “debates” is the main hashtag used 
during the three presidential debates. Using “debates” 
as a search keyword also covers other related keywords 
such as presidential debates, 2016 debates, election 
debates, etc. This allows us to avoid bias that would be 
caused by varying distributions of other potential key
words, such as the names of presidential candidates. 
Therefore, using the keyword “debates”, we collect 
about 5 million tweets during our study period, from 
26 September 2016, to 25 October 2016 (Figure 3). 
Among the collected tweets, we filter geo-located origi
nal tweets by excluding retweets, duplicates, tweets by 
bots, and tweets without any geotags or place tags. After 
filtering out those tweets, we finally obtain 825,712 
tweets which we use for the analysis in this study. We 
use states as the geographic unit of analysis for two 
reasons. First, our data collection is keyword-based 
with a large proportion of tweets geolocated at the 
state level. Second, state-level aggregation allows us to 
reduce data sparsity especially because the time series 
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data are divided by geography and subtopics. In 
a different dataset and case study, one may employ 
finer geographic units such as counties to employ our 
methodology and identify geopolitical regions of similar 
sentiment trends that may or may not follow the admin
istrative boundaries of states.

Figure 3 shows that the number of tweets increases 
dramatically when each debate starts and decreases 
exponentially right after the debate ends. Here, the 
reason that the maximum number of tweets for each 
debate is similar is due to the limitation of the Twitter 
Streaming API that returns only up to 1% of the total 
tweets. Because the data size varies over time, we first 
apply the fine-tuning approach to define the temporal 
unit of aggregation to avoid the data sparsity issue of 
some units. Considering that trends of the data will also 
be further split by topic and geography dimensions, the 
effect of data sparsity will even be greater a day after 
each debate. If we use a fixed-length periodization such 
as a day-long or 12-hour-long period, data sparsity will 
cause sentiment trends with fewer tweets to have spur
ious variations. Therefore, we use varying length periods 
to accommodate two objectives: (1) allocating approxi
mately the same or a similar number of tweets to each 
period (e.g. similar to quantile classification) (2) con
sidering the timeline of the debates to determine the 
breaks during and shortly after each debate. Finally, the 
varying lengths of time periods we use are 30 min from 
each debate’s starting time, 1 hour after the first 30 min, 
then one and a half hours, then 6 hours, then a day, and 
then the rest of the time before the starting time of the 
next debate. Since the format of the first and the third 
debates has six segments with 15 min each, we define 
the time length not to break in the middle of each 
segment and to have a similar number of tweets without 
strong fluctuations within each period.

We limit the study area to the 48 states in the con
tiguous United States. We exclude nine states: Montana, 
Idaho, North Dakota, South Dakota, Wyoming, 
Arkansas, West Virginia, Rhode Island, and Vermont, 
as these states do not have sufficient tweets to employ 

the time series analysis. Also, we group 27 states with 
sparse time series data into seven regions based on 
known socio-economic and cultural divisions in 
human geography. These regions are the rest of 
Northwest, Northeast, Mid-Atlantic, Southeast, 
Southwest, Lower Midwest, and Upper Midwest (see 
Appendix A). As a result, there is a total of 20 geo
graphic units formed by 13 states and 7 regions.

4.2. Topic modeling, clustering, and evolution

To capture subtopics emerging and disappearing in 
a short period, we partition the temporal extent of this 
study into three periods based on the timeline of the 
three debates. Each period starts at the debate starting 
time and ends at the next debate starting time. For 
example, the first time period is from September 26 at 
9 p.m. to October 9 at 9 p.m. (Eastern Standard Time). 
As described in Section 3.2.1, we perform topic model
ing to identify the optimal topic model and the asso
ciated topics for each period. We then cluster all topics 
of the three optimal topic models by performing the 
Louvain community detection on the topic similarity 
network, which is constructed based on the word-topic 
probabilities of topics in all three models. Here we use 
the term “subtopic” to distinguish a topic of each model 
from a topic cluster, which we refer to as “topic.” 
Grouping subtopics within and across different tem
poral topic models is essential because tracing temporal 
trends requires robust time series sentiment scores. 
Without grouping, most emerging topics suffer from 
sparse time series data, and therefore, it becomes diffi
cult to identify their temporal trends.

As a result of grouping subtopics, we identify six 
major topics which are illustrated in Figure 4 as word 
clouds. The words in each word cloud are the main 
words appearing in that topic, and the size of each 
word is proportional to the frequency of that word 
within each topic. At first glance, for example, Topic 0 
seems to be related to Donald Trump. However, upon 
closer examination, the topic has more to do with the 
candidates themselves, as demonstrated by the size of 
“trump” and “hillary” in Figure 4 word cloud. Given 
that the frequency of the former is larger than the latter, 
discussions of Donald Trump seem to be much more 
influential on this topic than discussions of Hillary 
Clinton, which is consistent with the broader narrative 
of the 2016 presidential election (Sides et al., 2017). On 
the other hand, Topic 1 seems to focus on Chris Wallace 
and the debates in general. Although the word “debates” 
is the most prevalent in this topic, the prominence of 
“chris” and “wallace” is most likely in relation to the 
performance of Chris Wallace as a moderator during 

Figure 3. Temporal changes in daily tweet frequency during 
three debates.
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the third presidential debate. Not only was he lauded for 
his ability to produce a productive dialogue between the 
candidates (Byers, 2016), but many thought he was able 
to “tame” Donald Trump, which is one of the reasons 
why he is the only 2016 moderator to be invited back to 
moderate a 2020 presidential debate. Also, in Topic 1, 
the word “climate” is also prominent, which may be due 
to the criticism about the climate change issue that is 
never discussed in any of the three debates. Although 
the other main topics are undoubtedly interesting, 
topics 0 (a.k.a., “trump”) and 1 (a.k.a., “debates”) are 
prevalent enough for us to conduct the analysis and 
visualization of spatio-topical sentiment trends that is 
the focal point of this study.

Although grouping subtopics into major topics 
seems to lose the variation of subtopics within each 
topic, one can always break each topic to its original 
subtopics and trace their semantic and temporal pat
terns. Figure 5 illustrates the word clouds depicting 
the words that form subtopics and their associated 
time series trend of sentiment scores. In Figure 5, 
Topic 0 consists of Subtopic 1, 4, and 8 of the first 
period, Subtopic 7, 10, 16, and 22 of the second 
period, and Subtopic 2, 4, and 11 of the third period. 
Although Topic 0 is overall about two candidates, 
there exist different subtopics, such as Trump’s claim 
about Obama and Clinton being founders of ISIS 

(Gibson & Holland, 2016) as appeared in Subtopic 
1 of Period 1.

4.3. Global sentiment trends by subtopics

To examine the sentiment trends, we compute the per
centage of each of positive, neutral, and negative tweets 
for each topic in each time frame, which are shown as 
bar charts in Figure 4. As discussed in Section 3.4, these 
bar charts illustrate the neutral sentiment using the 
empty space. For example, if a bar chart has 20% of 
positive tweets and 10% of negative tweets, it means that 
70% of tweets are neutral. While positive tweets are 
almost always below 20% of all tweets for all topics 
except Topic 3, negative tweets correspond to approxi
mately 20% of all tweets in most topics. Therefore, 
nearly 50% to 60% of tweets are neutral for all topics. 
Using these bar charts, Figure 4 illustrates global time 
series trends for each topic and highlights how the 
sentiment trend of each topic evolves over time. For 
example, Topic 3 and Topic 5 appear only before 
the day of the third debate. Since we extract subtopics 
separately for three different time periods (i.e. each 
period starts at each debate starting time and ends at 
the next debate starting time), this trend shows that 
subtopics in Topic 3, which is about the presidential 
polls, and Topic 5, which is about the fact-checking of 

Figure 4. Word cloud and sentiment trends of the six topics.

Figure 5. Evolution of subtopics in Topic 0.
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claims of the candidates, have been actively discussed 
only during the first two debate periods.

Although Figure 4 is useful for comparing relative 
amounts of the three sentiment classifications over time, 
we illustrate the average sentiment score of each topic in 
Figure 6 to understand the overall changes of sentiment 
trend by topic. On the y-axis, scores above 0 are positive 
and below 0 are negative. The trends in Figure 6 high
light fluctuations between positive and negative senti
ments over time only except Topic 3. Topic 3, which is 
about the presidential election polls, has positive senti
ment over time. Besides Topic 3, the other five topics 
have only small differences in their patterns. For exam
ple, Topic 0, which is related to two candidates, shows 
overall negative sentiment rather than positive, while 
Topic 1, which is about the debates in general, exhibits 
positive to neutral sentiment.

4.3. Spatio-topical sentiment trends

We further partition the global sentiment trends by 
topics and states. We compare the sentiment trends of 
all states to identify which geographic areas share simi
lar sentiment trends for a given topic. Following the 
methodology described in Section 3.3.2, we compute 
the DTW distance to measure the similarity between 

sentiment trends. As the two states have more similar 
sentiment trends, DTW distance becomes smaller. We 
create a network graph where our 20 geographic units 
(i.e. 13 states and 7 regions) are nodes, and similarities 
between sentiment trends of every pair of two units are 
edges. To calculate the edge weights, we reverse the 
DTW distance values since DTW distance is larger for 
dissimilar sentiment trends. Then, we conduct the 
Louvain community detection method to group the 
states and regions into geographic clusters that share 
similar trends. Note that these geographic clusters may 
be formed by geographically disjoint states because the 
Louvain method does not enforce spatial contiguity in 
deriving communities.

Figure 7 shows the geographic clusters identified for 
Topic 0 and Topic 1. States and regions sharing the 
same color are in the same geographic cluster, and the 
order of clusters has no meaning. This figure shows that 
adjacent states do not always share a similar sentiment 
trend, and the geographic clusters that share similar 
sentiment trends also vary across topics. For example, 
in Topic 0, Florida is in the same cluster as Texas, 
whereas in Topic 1, these states are in different clusters. 
The same could be said for Texas and Georgia. These 
two states are in different clusters in Topic 0 but in the 
same cluster in Topic 1. Traditionally, scholars would 
think of Florida, Texas, and Georgia as being part of the 
deep South and a relatively homogenous voting bloc. 
However, Figure 7 shows that these states often com
prise different communities online, depending on the 
topic. This does not mean that these states are not 
politically aligned, but rather, it suggests that traditional 
notions of homogeneity and community may need to be 
reconsidered when considering social media platforms, 
like Twitter.

To take a deeper look into spatio-topical sentiment 
trends, we visualize the sentiment distribution of each 
state using time series cartogram (Figure 8). Each state 
or region is represented with a time series bar chart 

Figure 6. Time series of average sentiment score by topic.

Figure 7. Clusters with high similarities of sentiment time series for Topic 0 (left) and Topic 1 (right).
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Figure 8. Time series of sentiment distribution by region for Topic 0 (upper, 8.A) and Topic 1 (lower, 8.B).
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illustrating the sentiment trend. Chart sizes are deter
mined based on the number of tweets that belong to the 
topic of attention across all geographic units. We use the 
geographical clusters in Figure 7 to visually encode each 
state or region based on their clusters. We do this by 
color-coding the frame and the grid lines of each bar 
chart depicted in the spatio-topical sentiment carto
grams (Figure 8). On the bottom left of Figure 8, there 
is a line graph that illustrates the sentiment time series 
of each geographic cluster. We include this to help 
understand the changes in general sentiment trends by 
clusters, while bar charts allow us to compare the rela
tive proportion of negative, positive, and neutral senti
ments. The word cloud for each topic is also included on 
the bottom right to explain what each topic is about.

In Topic 0 (Figure 8a), which is about the candidates, 
Texas, Pennsylvania, and Florida are in the same cluster 
in green, while New York, California, and DC are in the 
orange cluster. As we can see from the sentiment time 
series chart on the lower left, states in the green cluster 
have negative sentiment mostly during the first and 
third debates but the trend turns positive during 
the second debate. On the other hand, states in the 
orange cluster keep negative sentiment over all periods 
despite some fluctuations. In Topic 1 (Figure 8b), which 
is a discussion about the debates and the moderator, the 
sentiment time series chart reveals that Topic 1 is overall 
more positive than Topic 0 in all geographic clusters. As 
we discussed in the previous Section 4.3, we often think 
southern states, like Georgia, Florida, and Texas, are 
politically interchangeable, ultimately forming 
a common voting bloc, but, at least online, this is not 
the case. In Topic 0, Florida and Texas are in the same 
cluster, whereas in Topic 1, they are in different clusters, 
and instead, Texas and Georgia are in the same cluster. 
Therefore, Figure 8 reveals how online communities can 
(and often do) transcend traditional political bound
aries, as Figure 7 also shows, but with more detailed 
information about sentiment distributions over time.

5. Discussion and conclusion

This study introduces an approach that integrates nat
ural language processing with spatial time series analysis 
and geovisualization to identify spatio-topical sentiment 
trends on Twitter. Using the 2016 presidential debates 
as a case study, the results show that temporal distribu
tions of sentiments vary across different subtopics and 
geographies. Our findings also reveal that adjacent 
states do not always share similar sentiment trends, 
and the geographic clusters with similar sentiment 
trends also vary across topics. Failing to consider these 
variations may result in misunderstanding public 

discourse and sentiments that are diverse and spatio
temporally dynamic. For example, we find that states 
traditionally associated with one another politically 
often differ in terms of their online discourse. This 
suggests that our approach can not only help better 
explain key spatiotemporal variations on Twitter but 
may also help scholars gather new insights into how 
online communities form and evolve during discussions 
of major political events.

While the core focus of our article revolves around 
the 2016 presidential debates to contextualize our find
ings with the series of events and developments during 
the debates, we have also broadened our scope by 
including a case study on tweets during hurricane 
Irma in 2017. The results of this Irma case study align 
well with the major findings of our study that the pat
terns of sentiment changes over time vary substantially 
by different topics and across geographies, even at 
a smaller scale than state. The Irma case study reinforces 
the findings presented in the presidential debates case 
study, highlighting the dynamic nature of temporal 
sentiment patterns across different topics and geo
graphic regions. Furthermore, it underscores that the 
geographic clusters exhibiting similar sentiment pat
terns can vary across topics and may not necessarily be 
adjacent to one another. This supplementary investiga
tion serves as a compelling demonstration of the broad 
generalizability and practical applicability of our work
flow across diverse research domains.

There are, however, some limitations in this study. 
First, although grouping data spatially and temporally is 
inevitable to overcome the sparsity problem of the time 
series data, the way how to group the data may affect the 
results. For example, when we aggregate states, we con
sider spatial adjacency in addition to cultural coherence, 
but it would also be possible to use the similarity of 
sentiment time series instead of the adjacency to group 
states. To make the results more reliable, evaluations on 
how different data grouping methods change the results 
are needed in the future work. Also, we only included 
tweets written in English in the analysis, which may 
result in unintentionally excluding the users whose 
first language is not English. This study, particularly, 
uses political events as a case study, so people’s reactions 
to those events may significantly vary across different 
ethnicities. So, our results may include a bias due to 
excluding non-English tweets, which we need further 
investigation.

Despite these limitations, our approach provides an 
important foundation for future work. For example, 
online discussions are also used to assess public health 
trends (Paul et al., 2014). If scholars were able to look 
simultaneously at spatial and topical dimensions of 
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sentiment trends within these discussions, then it would 
make assessing public health trends more precise and 
make interventions more effective. The same could be 
said for other types of forecasting (Nisar & Yeung,  
2018). Whether it is an upcoming election (Tumasjan 
et al., 2011) or general demographic trends (McCormick 
et al., 2017), online discussions may prove more useful 
when the underlying dynamics are modeled simulta
neously. Regardless of the application, what we show 
in this paper provides a blueprint for these future endea
vors. Although online communities are often tied to 
physical places, sometimes they transcend these bound
aries, especially when discussing important political 
events. By modeling these dynamics, we provide scho
lars with the tools necessary to begin exploring similar 
relationships in their own data. We look forward to 
seeing future efforts and how they help shape our 
understanding of communities on- and offline.
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Appendix A. States and regions used in this study 

Regions  States (number of states) 

Northwest Washington, Oregon (2) 

Northeast  Maine, New Hampshire, Connecticut, Massachusetts (4) 

Mid-Atlantic  Delaware, Maryland, Virginia (3) 

Southeast  
Alabama, South Carolina, Mississippi, Louisiana, Kentucky, 

Tennessee (6) 

Southwest  Arizona, New Mexico, Utah, Oklahoma (4) 

Lower Midwest  Missouri, Kansas, Nebraska (3) 

Upper Midwest Iowa, Indiana, Michigan, Wisconsin, Minnesota (5) 

Individually 

analyzed states  

California, Colorado, District of Columbia, Florida, Georgia, 

Illinois, North Carolina, New Jersey, Nevada, New York, Ohio, 

Pennsylvania, Texas (13) 

Excluded states  

due to data 

sparsity  

Montana, Idaho, North Dakota, South Dakota, Wyoming, 

Arkansas, West Virginia, Rhode Island, and Vermont (9) 

 

Appendix B. A case study of Hurricane Irma 

To demonstrate the generalizability and applicability of our workflow in other research 

domains, we conducted an additional case study using Hurricane Irma. In this appendix 

section, we intentionally omit reporting on the optimal parameterization of our entire 

workflow. Instead, our focus is to provide a concise summary of the key findings from 

our second case study, as we aim to streamline the length and complexity of our 

analysis. Hurricane Irma, a category-5 hurricane, occurred in September 2017 and 

caused almost one hundred deaths and severe infrastructure damage of billions of 

dollars, mainly in Southern Florida. We chose Hurricane Irma as our case study since 

social media, especially Twitter, were popular during that time and widely used by the 

public and relevant agencies for a variety of efforts including situational awareness, 

evacuation, and recovery (Sit et al., 2019). The Twitter data related to Irma were used 

for this case study. Details about how those tweets were collected and pre-processed can 

be found in the Sit et al. (2019)’s study.  



 

We partitioned the temporal extent into three time periods based on the progress 

of Irma and the daily tweet frequency. The first time period is from September 4 to 7 (4 

days), the second time period is from September 8 to 11 (4 days), and the third time 

period is from September 12 to17 (6 days). As described in the methodology section, 

we identified the optimal topic model for each period and then clustered all topics of the 

three optimal topic models to capture subtopics emerging and disappearing in a short 

period. As a result, we identified five major topics, which are illustrated in Figure A-1 

as wordclouds. In all five topics, ‘hurricane’ is the most frequent word, but upon closer 

examination, each topic has distinct subtopics. For example, Topic 0 is about sharing 

the situation of hurricane as well as hopes and prayers for affected people, while Topic 

1 includes discussions of climate change influencing the frequency and severity of 

weather-related hazards. Topic 2 focuses on damage due to the hurricane, including 

power outages and flood. Notice that Topic 2 appears later than the other topics as the 

study period includes pre-period before the hurricane made its first landfall in Florida. 

Topic 3 is also about Irma but includes subtopics about hurricane Maria which occurred 

right after Irma. Topic 4 mainly includes tweets in Spanish. Among five topics, Topic 0 

and Topic 1 were dominant than the other topics as Figure A-2 shows.  



 

 

Figure A-1. Wordcloud and sentiment trends of the five topics 

 

 

 
Figure A-2. Time series of daily number of tweets by topic 

 

  



Figure A-3 depicts the temporal changes of sentiment by topics. Since scores 

above 0 are positive and below 0 are negative, most of the five topics exhibit a 

prevailing negative sentiment. However, it is worth noting that Topic 0 initially 

displayed a positive average sentiment during the first half period, which shifted to a 

negative sentiment. This transition can be attributed to the fact that Topic 0 includes 

tweets concerning prayers and hopes. It is likely that that during the initial stages of the 

hurricane, people tend to express more positive sentiment driven by hope. However, as 

time progresses and the true extent of the damage becomes increasingly evident, the 

sentiment gradually shifts towards negativity.  

Figure A-3. Time series of average sentiment score by topic 

To further understand spatio-topical sentiment trends, we performed spatial time 

series analysis using counties in Florida. The number of tweets varies significantly 

across counties in Florida, and some counties do not have sufficient data to conduct the 

time series analysis. To address the data sparsity issue, we first grouped counties into 

six regions and then investigated how sentiment trends vary across those regions and 

which regions share similar sentiment trends by topics. Figure A-4 illustrates six regions 

that we used in this case study. This grouping is based on spatial adjacency, geographic 

location, and data distribution.  



 

 
Figure A-4. Six regions grouping counties in Florida (Revised from the image by the 

Florida Office of Film and Entertainment https://filminflorida.com/map-of-fl-counties/)  

 

Using these six regions, we identified the geographic clusters that share similar 

sentiment trends for each topic based on DTW distances between regions and 

community detection method. Next, we generated spatio-topical sentiment cartograms 

to represent the geographic clusters and the sentiment distribution trends of each region 

for different topics. These cartograms provide an illustrative depiction of both the 

geographic clustering and the sentiment distribution patterns across the regions. Figure 

A-5 shows such cartograms for two distinct topics, Topic 1 and Topic 2. 

In Topic 1 (Figure A-5, upper), which is about Irma relief and climate change, 

all six regions have similar patterns in general, but they are classified into two clusters 

depending on how their sentiment trends changed at the end. Both of these clusters 

exhibit predominantly negative sentiments. However, it is worth noting that towards the 

end, the sentiment in the Northeast, Central East, and Central West regions shifted to 

become more positive. In contrast, the sentiment in the Southwest, Southeast, and 

Northwest regions displayed an intensified negativity.  This observation can be 

https://filminflorida.com/map-of-fl-counties/


 

attributed to the fact that southern Florida was one of the most severely impacted areas 

by hurricane Irma. As a result, people residing in those areas simply shared the impact 

of the disaster on Twitter, leading to a predominant expression of negative sentiment. 

Similarly, in Topic 2 (Figure A-5, lower), which is about damage by Irma, six 

regions are divided into two different clusters. Note that since this topic appears from 

the second time period, the bar chart of each region shows sentiment from 09/08/17, 

having fewer bars than charts in Topic 1 that start from 09/04/17. The two clusters in 

Topic 2 have similar patterns of changing sentiments, but the cluster in green has more 

negative sentiments than the other cluster does as the line graph in Figure A-5 

demonstrates. It is not surprising that Southeast region has more negative sentiments 

than others since it is most severely affected. However, interestingly, Southwest and 

Southeast, which are in the same geographic cluster in Topic 1, are not in the same 

cluster in Topic 2.  

These results further support the conclusions drawn in the 2016 presidential 

debate case study regarding the variations in temporal sentiment patterns across 

different topics and geographic locations. Furthermore, it underscores that the 

geographic clusters exhibiting similar sentiment patterns can vary across topics and may 

not necessarily be adjacent to one another. These observations emphasize the intricate 

relationship between sentiment, topics, and geography, highlighting the need for a 

nuanced understanding of these factors in sentiment analysis. 



 

 

 

Figure A-5. Time series of sentiment distribution by regions for  

Topic 1 (upper) and Topic 2 (lower) 
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