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Background
• Disruptive events (such as COVID-19) affect 

human mobility and communication, changing 
physical and virtual community structures. 

• To assess these changes, community detection 
within spatiotemporal networks must be 
performed, detecting changes within 
communities over space and time.

Community structures are visualized as a network 
with nodes and edges. Nodes represent counties 

and edges represent weighted, directional 
connections between nodes. Weights are assigned 

according to the strength of physical/virtual 
connections. Different colors represent distinct 

communities (Kuikka, 2021). 

Research Question
How do disruptive events, such as COVID-19, change 
physical and virtual community structures?

Objectives
• Develop a methodology to track physical and 

virtual communities over time AND assess 
structural changes during disruptive events.

• Conduct a case study on COVID-19
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Data
We capture flow data from two sources to form 
both physical and virtual flow datasets. Both 
sources aggregate data at a county level and have 
discrete snapshots of data during individual periods.

Virtual: Facebook Social 
Connectedness Index, 
calculated using friend 
counts across counties 

(Bailey et al. 2018)

Physical: Safegraph 
data, created using 

anonymized cellphone 
location tracking.

 (Kang et al., 2020)
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Network Pre-Period Post-Period Adj. Rand Jaccard NMI
SafeGraph 2019/3 – 2020/3 2020/4 – 2021/4 0.82 0.70 0.93

Facebook 2015 2021 0.67 0.52 0.83
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Various similarity metrics indicating community similarity 
pre- and post-covid. Higher values indicate greater similarity.

Primary Results
• Online connections were intensified              

(decrease in modularity and number of regions)
• Long-distance physical travel decreased       

(increase in modularity and number of regions) 
• Virtual communities changed more drastically 

than physical communities                                                  
(smaller community similarity metric values)

• We detected many interesting regional community 
events, such as growth, merge, and split events.

Primary Conclusion
Physical interactions became shorter, resulting in 
more localized geographic communities and greater 
modularity. Virtual interactions became longer, 
resulting in larger communities with less modularity. 
Impact
• Novel methodology quantitively assesses 

community evolution, applicable on wide spatial 
and temporal scales. 

• Developed understanding of how disruptive 
events affect communities.

Limitations
• We have not proven that the trends found are 

specific to the COVID-19 pandemic, as opposed 
to being a symptom of global virtualization. 

Future Work
• Enhancing techniques for visualizing community 

evolution, e.g. improving Sankey diagrams. 
• Further case studies on different spatial and 

temporal scales. We are currently working on 
studying community evolution during the Civil War 
using family tree data.

Preliminary results from a 
Civil War case study


